Supplementary Information

Anti-glycation and anti-oxidative effects of a phenolic-enriched maple syrup extract and its protective effects on normal human colon cells

Weixi Liu, Zhengxi Wei, Hang Ma, Ang Cai, Yongqiang Liu, Jiadong Sun, Nicholas A. DaSilva, Shelby L. Johnson, Louis J. Kirschenbaum, Bongsup P. Cho, Joel A. Dain, David C. Rowley, Zahir A. Shaikh and Navindra P. Seeram*

Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA

Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA

Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA

‡ These authors contributed equally to this work

*Corresponding author:

Navindra P. Seeram, Ph.D.
Bioactive Botanical Research Laboratory
Department of Biomedical and Pharmaceutical Sciences
College of Pharmacy, University of Rhode Island
7 Greenhouse Road, Kingston, RI 02881
Tel: 401-874-9367; Email: nseeram@uri.edu
List of contents

HPLC- DAD analyses for presence of phenolics………………………………………………3
Analyses of phenolic content..3
Analyses of sugar content...3
Figure S1..5
Figure S2..6
Figure S3..7
Table S1...8
Table S2...9
HPLC- DAD analyses for presence of phenolics

MSX was evaluated by HPLC-DAD for the presence of peaks indicative of phenolic compounds (see Fig. S1) present therein as previously reported by our laboratory (Zhang et al., 2014). Briefly, MSX (dissolved in DMSO; all at equivalent concentrations of 15 mg/mL) was analyzed on a Luna C18 column (250 × 4.6 mm i.d., 5 μM; Phenomenex) with a flow rate of 0.75 mL/min and injection volume of 20 μL for each sample. A linear gradient solvent system consisting of solvent A (0.1% aqueous trifluoroacetic acid) and solvent B (methanol) at room temperature was used as follows: 0–30 min, from 5% to 33.4% B; 30–80 min, from 33.4% to 71% B; 80–85 min, from 71% to 100% B; 85–86 min, from 100% to 5% B; 86–94 min, 5% B.

Analyses of phenolic content using MaPLES

MSX and its purified fractions (MSX-EtOAc and MSX-Aq), were evaluated for total phenolic content based on maple phenolic lignan-enriched standard (MaPLES) by the Folin-Ciocalteau method as previously reported (Liu et al., 2016). A calibration curve using an authentic standard of maple phenolic lignan-enriched standard was prepared and the results were expressed as (mg/100g of MaPLES).

Analyses of sugar content

Sugar content of MSX was analyzed by High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD) using a Hamilton RCX-30 250/4.6 column (Metrohm AG, Riverview, FL, USA) on a 940 Professional IC Vario system (Metrohm AG, Riverview, FL, USA) and eluted with isocratic 100 mM NaOH at 1 mL/min. Glucose, fructose and sucrose were used as monosaccharide standards.

Phosphorylation of p38

Primary antibodies for p38 and phosphorylated-p38 (Thr180/Tyr182) were purchased from Cell Signaling Technology (Danvers, MA, USA). The normal human colon CCD-18Co cells were
treated with 250 μg/mL MSX for 15 mins or for 12 h. The cell lysates were analyzed for p-p38 and p38 by western blot analyses (see Fig. S3).
Figure S1. HPLC-DAD chromatogram of a phenolic-enriched maple syrup extract (MSX) showing 37 compounds identified as follows: (1) 4-hydroxy-2-(hydroxymethyl)-5-methyl-3(2H)-furanone, (2) 3,4-dihydro-5-(hydroxymethyl)pyran-2-one, (3) 5-(hydroxymethyl)furfural, (4) 2-hydroxy-3,4-dihydroxyacetophenone, (5) 4-(hydroxymethyl)-1,2-benzenediol, (6) catechol, (7) C-veratroylglycol, (8) threo.threo-1-[4-(2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethoxy)-3-methoxyphenyl]-1,2,3-propanetriol, (9) 2,3-dihydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone, (10) 4-acetylcatechol, (11) tyrosol, (12) catechaldehyde, (13) 1,2-diguaiaeryl-1,3-propanediol, (14) 3',5'-dimethoxy-4'-hydroxy-2-hydroxyacetophenone, (15) leptolepisol D, (16) 3,4-dihydroxy-2-methylbenzaldehyde, (17) vanillin, (18) fraxetin, (19) syringaldehyde, (20) syringenin, (21) scopoletin, (22) threo-guaiacylglycerol-β-O-4'-dihydroconiferyl alcohol, (23) erythro-guaiacylglycerol-β-O-4'-dihydroconiferyl alcohol, (24) 5-(3'',4''-dimethoxyphenyl)-3-hydroxy-3-(4'-hydroxy-3'-methoxybenzyl)-4-(hydroxymethyl) dihydrofuran-2-one, (25) 1-(2,3,4-trihydroxy-5-methylphenyl)ethanone, (26) erythro-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2,6-dimethoxyphenoxyl]-1,3-propanediol, (27) icariside E4, (28) 3',4',5'-trihydroxyacetophenone, (29) dehydroconiferyl alcohol, (30) sakuraresinol, (31) secoisolariciresinol, (32) acernikol, (33) (1S,2R)-2-[2,6-dimethoxy-4-[1S,3aR,4S,6aR]-tetrahydro-4-(4-hydroxy-3,5-dimethoxyphenyl)-1H,3H-furo[3,4-c]furan-1-yl]phenoxy]-1-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol, (34) 2-[4-[2,3-dihydro-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2-benzofuranyl]-2,6-dimethoxyphenoxy]-1-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol, (35) 4,4'-dihydroxy-3,3',5,5'-tetramethoxystilbene, (36) 4,4'-dihydroxy-3,3',5'-trimethoxystilbene, and (37) (E)-3,3'-dimethoxy-4,4'-dihydroxystilbene.
Figure S2. Cytotoxic effects of AGE and MGO on normal human colon CCD-18Co cells. Untreated cells were grown in 10% FBS-supplemented DMEM for 2 days. The viability of cells treated with MGO, AGE, or each co-treated with 50 μg/mL MSX were measured by the CCK-8/MTT assay and compared to the untreated cells. Relative cell viability was plotted as mean ± SE (n=3).
Figure S3. The effects of MSX on p38 phosphorylation. The normal human colon CCD-18Co cells were treated with 250 μg/mL MSX for 15 mins or for 12 h. The cell lysates were analyzed for p-p38 and p38 by western blot analyses.
Table S1. The phenolic and sugar contents of MSX

<table>
<thead>
<tr>
<th>Sample</th>
<th>Phenolic content (as % of MaPLES equivalents)</th>
<th>Sugar content (Sucrose, as %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSX</td>
<td>92.41</td>
<td><0.1</td>
</tr>
</tbody>
</table>
Table S2. Transition midpoint temperatures (Tms) and enthalpy (ΔH) determined by Differential scanning calorimetry

<table>
<thead>
<tr>
<th>samples</th>
<th>Tm1 (°C)</th>
<th>Enthalpy (ΔH) kcal/mol</th>
<th>Tm2 (°C)</th>
<th>Enthalpy (ΔH) kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural BSA</td>
<td>65.2</td>
<td>150.6</td>
<td>74.1</td>
<td>56.2</td>
</tr>
<tr>
<td>Glycated BSA</td>
<td>67.6</td>
<td>233.7</td>
<td>78.8</td>
<td>488.8</td>
</tr>
<tr>
<td>MSX treated BSA</td>
<td>67.5</td>
<td>168.1</td>
<td>78.4</td>
<td>230.9</td>
</tr>
</tbody>
</table>