High Graphite N Content in Nitrogen-Doped Graphene as an Efficient Metal-free Catalyst for Reduction of Nitroarenes in Water

Fan Yang,a† Cheng Chi,a† Chunxia Wang,b Ying Wangc* and Yongfeng Li*a*

aState Key Laboratory of Heavy oil Processing, China University of Petroleum, Beijing Changping 102249, China

bBeijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China. E-mail: yfli@cup.edu.cn.

cState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. E-mail: ywang_2012@ciac.ac.cn.

†These authors contributed equally.
1. General Information

1H NMR spectra are recorded on JNM-LA300FT-NMR (300 MHz, 400 MHz) spectrometers. 1H NMR spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shifts of CDCl$_3$ at 7.26 ppm and CD$_3$OD at 3.33 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broadened), and coupling constants (Hz). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm precoated plate Kieselgel 60 F254 (Merck).

2. Mechanism study for the reduction of nitroarenes

0.5 mmol p-nitrochlorobenzene (40 mg) was moved into a reactor together with 2 mg NG-1 and 1 ml water at room temperature. The mixture was stirred for 1-2 min for thoroughly mixing. 5 equiv. of NaBH$_4$ (1.25 mmol/mL) 2mL was added dropwise into the above solution under magnetic stirring at room temperature. After reacting for 0.5 hour, the sample was dissolved in ethyl acetate and analyzed by GC-MS. The initial temperature of the column was 70 °C held for 1 min and was programmed to 300 °C at 15 °C/min, then held for 15 min at 300 °C, the sample injection volume was 2 μL. Helium was used as carrier gas at a flow rate of 1.1 mL/min on split mode (1:50).

3. Computational details

All the electronic structure and energy calculations were carried out by the spin-polarized density functional theory (DFT) using the Vienna ab initio simulation package (VASP).$^{1-4}$ PAW potentials were used to describe ion cores and valence electrons interactions.5,6 The adopted exchange-correlation functional is the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof.7 A kinetic energy cut off of 350 eV was used with a plane-wave basis set. The integration of the Brillouin zone was conducted using a 5×5×1 Monkhorst-Pack grid.8 All atoms were fully relaxed and optimized until the force was converged to 0.05 eV/Å and the total energy was converged to 1.0×10$^{-5}$ eV/atom.

Four kinds of nitrogen doped graphene (NG), graphitic N, pyridinic N, pyrrolic N, and pyridinic N oxidized, were established based on the 4 × 4 single layer graphene, armchair and zigzag ribbons. The structures were designed according to previous reference.9 The periodical graphene slab 9.86 Å × 8.60 Å in size was used. The edge graphene ribbon was prepared with the size of 20 Å × 8.60 Å. To avoid the image
interactions sufficiently large vacuum of 15.0 Å has been taken along the z-axis.

The adsorption energy (E_{ads}) of nitrobenzene was defined as follows:

$$E_{\text{ads}} = E_{\text{substrate+nitrobenzene}} - E_{\text{nitrobenzene}} - E_{\text{substrate}} \quad (1)$$

where $E_{\text{substrate+nitrobenzene}}$, $E_{\text{nitrobenzene}}$, and $E_{\text{substrate}}$ are corresponding to the total energies of a nitrobenzene molecule and four NG substrates, a gas phase nitrobenzene, and an isolated substrate, respectively. A negative value indicates an exothermic chemisorption.
4. The GC-MS spectra of reduction reaction intermediate products

Fig. S1 The GC-MS spectra of reduction reaction intermediate products.
5. A proposed reaction mechanism for NG catalyze reduction of nitroarene

\[
\text{Fig. S2 Schematic of the proposed reaction pathway for nitroarenes reduction}
\]

6. Spectroscopic data of the products:

Aniline hydrochloride (Table 3, entry 1)^10

\[
\text{Cl-} \text{NH}_2 \text{HCl}
\]

\[^{1}H\text{ NMR (400 MHz, CD}_3\text{OD)} \delta 7.57-7.52 (m, 3H), 7.44 (d, J = 8.8 Hz, 2H).\]

4-Chloroaniline (Table 3, entry 2)^11

\[\text{Cl-} \text{NH}_2\]

\[^{1}H\text{ NMR (400 MHz, CDCl}_3\text{)} \delta 7.10 (d, J = 8.4 Hz, 2H), 6.33 (d, J = 8.4 Hz, 2H), 3.66 (s, 2H).\]

4-Bromoaniline hydrochloride (Table 3, entry 3)^10
4-Iodoaniline hydrochloride (Table 3, entry 4)

4-Methylaniline hydrochloride (Table 3, entry 5)

4-Nitroaniline (Table 3, entry 6)

4-Aminophenol hydrochloride (Table 3, entry 7)

4-Methoxyaniline hydrochloride (Table 3, entry 8)

4-Amino-benzoic acid hydrochloride (Table 3, entry 9)
$\text{HOOC-} \text{NH}_2\text{HCl}$

$^1\text{H NMR (300 MHz, CD}_3\text{OD) } \delta 8.16 (d, J = 8.7 \text{ Hz}, 2\text{H}), 7.48 (m, J = 8.7 \text{ Hz}, 2\text{H}).$

4-Aminobenzonitrile (Table 3, entry 10)

$\text{N}=\text{C-} \text{NH}_2\text{HCl}$

$^1\text{H NMR (400 MHz, CD}_3\text{OD) } \delta 7.76 (d, J = 8.8 \text{ Hz}, 2\text{H}), 7.30 (d, J = 8.8 \text{ Hz}, 2\text{H}).$

References

3. 1H NMR charts of the products:

Aniline hydrochloride (Table 3, entry 1):

![Aniline hydrochloride NMR chart](image)

4-Chloroaniline (Table 3, entry 2):

![4-Chloroaniline NMR chart](image)
4-Bromoaniline hydrochloride (Table 3, entry 3):

4-Iodoaniline hydrochloride (Table 3, entry 4)
4-Methylaniline hydrochloride (Table 3, entry 5)

4-Nitroaniline (Table 3, entry 6)
4-Aminophenol hydrochloride (Table 3, entry 7)

4-Methoxyaniline hydrochloride (Table 3, entry 8)
4-Amino-benzoic acid hydrochloride (Table 3, entry 9)

4-Aminobenzonitrile (Table 3, entry 10)