Supporting Information

Directed Alkynylation of Unactivated C(sp³)–H bonds with Ethynylbenziodoxolones Mediated by DTBP

Zhi-Fei Cheng,^a Yi-Si Feng,^{*,a,b,c} Chun Rong,^a Tao Xu,^a Peng-Fei Wang,^a

Jun Xu,^a Jian-Jun Dai,^a and Hua-Jian Xu*,^{a,b,c}

[†]School of Chemistry and Chemical Engineering and School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009, P. R. China

*Anhui Key Laboratory of Controllable Chemical Reaction and Material Chemical Engineering, Hefei 230009, P. R. China
*Anhui Provincial Laboratory of Heterocyclic Chemistry, Maanshan 243110, China

1. General	S3
 General procedure for alkynylation of α-C-H bonds The spectral data of all products 	S3 S3-S11
5. ¹ H NMR spectra for KIE experiment	S36

1. General

All the reactions were conducted in oven-dried Schlenk tubes. All solvents were obtained from commercial suppliers and used without further purification. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (200-300 mesh).

¹H NMR and ¹³C NMR spectra were recorded on a 600 MHz spectrometer in CDCl₃ and (CD₃)₂SO. Data for ¹H NMR are reported as follows: chemical shift (ppm, scale), multiplicity, coupling constant (Hz), and integration. Data for ¹³C NMR are reported in terms of chemical shift (ppm, scale), multiplicity, and coupling constant (Hz). Gas chromatographic (GC) analyses were performed on a GC equipped with a flameionization detector and an Rtx@-65 (30 m × 0.32 mm ID × 0.25 µm df) column. GC-MS analyses were performed on a GC-MS with an EI mode. High-resolution mass spectra were obtained by ESI on a TOF mass analyzer.

2. General procedure for alkynylation of C-H bonds

A sealed 25 mL Schlenk tube with a magnetic stir bar charged with ethynylbenziodoxolones (0.2 mmol), DTBP (di-tert-butyl peroxide, 1.0 equiv), solvent (1 mL), and the reaction mixture was heated under argon atmosphere for 16 h. The reaction mixture was then allowed to cool to room temperature, diluted with ethyl acetate, washed with water, and then the organic layer was dried over Mg_2SO_4 . After concentrated in vacuo, the crude product was purified by column chromatography on silica gel (ethyl acetate : petroleum ether).

3. The spectral data of all products

(Cyclohexylethynyl)triisopropylsilane $(3aa)^1$: Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and 1a : 2a = 1:46, obtained in 83 % yield as a colorless oil (43.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 2.44 (s, 1H), 1.81 – 1.65 (m, 4H), 1.46 (dd, J = 18.6, 9.1 Hz, 3H), 1.35 – 1.26 (m, 3H), 1.10 – 0.94 (m, 21H). ¹³C NMR (151 MHz, CDCl₃) δ 113.5, 79.5, 32.7, 29.7, 25.9, 24.4, 18.6, 11.2.

TIPS

(Cyclopentylethynyl)triisopropylsilane $(3ab)^1$: Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and 1a : 2b = 1:54, obtained in 83 % yield as a colorless oil (36 mg). ¹H NMR (600 MHz, CDCl₃) δ 2.70 – 2.59 (m, 1H), 1.93 – 1.83 (m, 2H), 1.72 (s, 2H), 1.67 – 1.59 (m, 2H), 1.54 (s, 2H), 1.12 – 0.92 (m, 21H). ¹³C NMR (151 MHz, CDCl₃) δ 114.0, 79.0, 34.2, 31.2, 24.9, 18.6, 11.2.

Ph₂^tBuSi 、

tert-butyl(cyclopentylethynyl)diphenylsilane (3bb) : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1b** : **2b** = 1:54, obtained in 41 % yield as a colorless oil (27.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 6.3 Hz, 4H), 7.37 (t, J = 7.3 Hz, 6H), 2.88 – 2.78 (m, 1H), 2.04 – 1.96 (m, 2H), 1.86 – 1.73 (m, 4H), 1.62 (d, J = 3.7 Hz, 2H), 1.07 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 135.5, 134.0, 129.2, 127.5, 116.5, 78.4, 34.0, 31.3, 27.0, 25.0, 18.5. HRMS calcd for C₂₃H₂₈Si [M + H]⁺ 332.1960; found: 332.1962.

(cycloheptylethynyl)triisopropylsilane $(3ac)^2$: Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and 1a : 2c = 1:41, obtained in 52 % yield as a colorless oil (28.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 2.65 (s, 1H), 1.78 (dd, J = 11.1, 3.7 Hz, 2H), 1.70 (dd, J = 11.8, 7.0 Hz, 4H), 1.60 – 1.46 (m, 6H), 1.03 (dd, J = 18.2, 5.9 Hz, 21H). ¹³C NMR (151 MHz, CDCl₃) δ 114.1, 79.7, 34.7, 31.9, 27.7, 25.4, 18.6, 11.3.

(cyclooctylethynyl)triisopropylsilane (3ad) : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and 1a : 2d = 1:37, obtained in 71 % yield as a colorless oil (41.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 2.62 (td, J = 8.1, 4.1 Hz, 1H), 1.88 – 1.80 (m, 2H), 1.77 – 1.63 (m, 4H), 1.60 – 1.40 (m, 8H), 1.11 – 0.96 (m, 21H). ¹³C NMR (151 MHz, CDCl₃) δ 114.5, 79.3, 31.6, 31.2, 27.4, 25.3, 24.3, 18.6, 11.3. HRMS calcd for C₁₉H₃₆Si [M + H]⁺ 292.2586; found: 292.2588.

TIPS

(cyclodecylethynyl)triisopropylsilane (3ae) : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and 1a : 2e = 1:31, obtained in 67 % yield as a colorless oil (42.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 2.78 – 2.56 (m, 1H), 1.78 – 1.63 (m, 6H), 1.51 (s, 12H), 1.08 – 1.02 (m, 21H). ¹³C NMR (151 MHz, CDCl₃) δ 114.4, 78.8, 30.3, 29.9, 25.1, 24.9, 24.3, 23.3, 18.6, 11.2. HRMS calcd for C₁₉H₃₆Si [M + H]⁺ 320.2899; found: 320.2897.

tert-butyl(cyclododecylethynyl)diphenylsilane (3bf) : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and 1b : 2f = 1:5, obtained in 53 % yield as a pale yellow oil (45.6 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.82 (d, J = 6.6 Hz, 4H), 7.37 (d, J = 7.0 Hz, 6H), 2.70 – 2.65 (m, 1H), 1.74 (dd, J = 13.4, 6.7 Hz, 2H), 1.65 – 1.58 (m, 4H), 1.37 (dd, J = 32.0, 8.8 Hz, 16H), 1.10 (d, J = 22.3 Hz, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 135.5, 134.0, 129.2, 127.5, 116.6, 78.4, 29.9, 28.2, 27.0, 23.9, 23.4, 22.2. HRMS calcd for C₃₀H₄₂Si [M + H]⁺ 430.3056; found: 430.3053.

2-((4-chlorophenyl)ethynyl)tetrahydrofuran (3cg)³ : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1c** : **2g** = 1:69, obtained in 70 % yield as a pale yellow oil (28.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.35 (d, J = 8.4 Hz, 2H), 7.28 – 7.25 (m, 2H), 4.82 – 4.77 (m, 1H), 4.00 (dd, J = 14.6, 7.1 Hz, 1H), 3.85 (dd, J = 13.6, 7.8 Hz, 1H), 2.26 – 2.19 (m, 1H), 2.11 – 2.04 (m, 2H), 1.95 (dd, J = 13.3, 5.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 134.2, 132.9, 128.5, 121.2, 90.0, 83.3, 68.5, 67.9, 33.3, 25.4.

2-((4-chlorophenyl)ethynyl)tetrahydrothiophene (3ch) : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and 1c : 2h = 1:57, obtained in 45 % yield as a pale yellow oil (19.9)

mg). ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.7 Hz, 2H), 4.25 (t, *J* = 5.3 Hz, 1H), 3.15 – 3.07 (m, 1H), 2.94 (d, *J* = 5.9 Hz, 1H), 2.23 (d, *J* = 6.6 Hz, 2H), 2.15 (dd, *J* = 11.8, 5.9 Hz, 1H), 2.10 – 2.05 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 133.9, 132.8, 128.4, 121.7, 91.7, 81.7, 38.8, 36.8, 32.9, 30.4. HRMS calcd for C₁₂H₁₁ClS [M + H]⁺ 222.0270; found: 222.0272.

1-chloro-4-(3,5-dichloropent-1-ynyl)benzene (3ci) : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1c** : **2i** = 1:53, obtained in 61 % yield as a pale yellow oil (29.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.37 (t, *J* = 10.3 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 5.00 (t, *J* = 6.8 Hz, 1H), 3.78 (ddd, *J* = 16.9, 10.1, 4.7 Hz, 2H), 2.47 (q, *J* = 6.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 135.1, 133.0, 128.7, 120.2, 86.9, 85.6, 45.9, 41.4, 40.8. HRMS calcd for C₁₁H₉Cl₃ [M + H]⁺ 245.9770; found: 245.9772.

(Adamantan-1-ylethynyl)triisopropylsilane $(3aj)^4$: Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1a**: **2j** = 1:5, obtained in 59 % yield as a colorless oil (37.3 mg). ¹H NMR (600 MHz, CDCl₃) δ 1.94 (s, 3H), 1.88 (s, 6H), 1.75 (s, 2H), 1.68 (s, 4H), 1.11 – 0.98 (m, 21H). ¹³C NMR (151 MHz, CDCl₃) δ 118.0, 77.4, 43.0, 36.4, 30.3, 28.0, 18.6, 11.2.

1-Chloro-4-((1-methylcyclohexyl)ethynyl)benzene $(3ck)^1$: Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1c** : **2k** = 1:39, obtained in 65 % yield as a colorless oil (30.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.32 (d, *J* = 8.4 Hz, 2H), 7.24 (dd, *J* = 9.1, 4.3 Hz, 2H), 1.80 (d, *J* = 12.6 Hz, 2H), 1.71 – 1.64 (m, 3H), 1.60 (dd, *J* = 10.0, 3.4 Hz, 2H), 1.26 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 133.2, 132.7, 128.3, 122.7, 97.8, 80.7, 39.4, 33.1, 30.1, 25.8, 23.4.

1-chloro-4-(3-methylhept-1-ynyl)benzene, 1-chloro-4-(3-ethylhex-1-ynyl)benzene (3cl) : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1c** : **2l** = 1:40, obtained in 54 % yield as a colorless oil (23.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.31 (dd, *J* = 8.4, 2.2 Hz, 3H), 7.26 – 7.22 (m, 4H), 2.62 (dd, *J* = 13.2, 6.6 Hz, 1H), 2.47 (t, *J* = 6.7 Hz, 0.62H), 1.62 – 1.54 (m, 3H), 1.50 (d, *J* = 4.4 Hz, 6H), 1.37 – 1.31 (m, 3H), 1.28 – 1.21 (m, 9H), 1.04 (t, *J* = 7.4 Hz, 2H), 0.97 – 0.85 (m, 7H). ¹³C NMR (151 MHz, CDCl₃) δ 133.2, 132.7, 132.7, 128.4, 124.2, 122.6, 95.9, 94.7, 80.7, 79.5, 36.8, 36.6, 33.7, 28.0, 26.5, 22.5, 20.9, 20.6, 14.0, 11.8. HRMS calcd for C₁₄H₁₇Cl [M + H]⁺ 220.1019; found: 220.1016.

pent-1-ynylcyclohexane (4a) : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1a** : **2a** = 1:46, obtained in 55 % yield as a pale yellow oil (33.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 2.14 (dd, J = 14.1, 6.7 Hz, 2H), 1.73 (dd, J = 45.9, 8.3 Hz, 3H), 1.47 (dd, J = 14.4, 7.2 Hz, 3H), 1.37 (d, J = 6.9 Hz, 4H), 1.26 (s, 24H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 84.6, 80.2, 33.2, 31.9, 29.7, 29.6, 29.5, 29.3, 29.1, 28.8, 28.5, 25.9, 24.9, 22.6, 20.8, 18.7, 14.1. HRMS calcd for C₂₂H₄₀ [M + H]⁺ 304.3130; found: 304.3132.

Ph₂^tBuSi

tert-butyl(cyclohexylethynyl)diphenylsilane (4b) : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1b** : **2a** = 1:46, obtained in 49 % yield as a colorless oil (33.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.88 – 7.81 (m, 4H), 7.40 (t, *J* = 9.4 Hz, 6H), 2.63 (s, 1H), 1.91 (d, *J* = 4.5 Hz, 2H), 1.81 (dd, *J* = 6.3, 2.3 Hz, 2H), 1.65 (d, *J* = 9.2 Hz, 2H), 1.54 (s, 1H), 1.40 (d, *J* = 10.0 Hz, 3H), 1.10 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 135.5, 133.9, 129.2, 127.5, 116.0, 78.8, 32.5, 30.0, 27.0, 25.9, 24.6, 18.5. HRMS calcd for C₂₄H₃₀Si [M + H]⁺346.2117; found: 346.2119.

tert-butyl(cyclohexylethynyl)dimethylsilane $(4c)^2$: Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and 1c : 2a = 1:46, obtained in 62 % yield as a colorless oil (27.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 2.41 (s, 1H), 1.76 (d, J = 8.7 Hz, 2H), 1.74 – 1.67 (m, 2H), 1.52 – 1.42 (m, 3H), 1.31 (d, J = 6.1 Hz, 3H), 0.92 (s, 9H), 0.07 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 112.3, 81.8, 32.6, 29.8, 26.0, 25.8, 24.6, 16.5, -4.4.

1-(cyclohexylethynyl)-4-methylbenzene (4d)⁵ : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1d** : **2a** = 1:46, obtained in 70 % yield as a colorless oil (27.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.28 (d, *J* = 7.8 Hz, 2H), 7.08 (d, *J* = 7.7 Hz, 2H), 2.57 (s, 1H), 2.32 (s, 3H), 1.87 (d, *J* = 10.5 Hz, 2H), 1.75 (d, *J* = 4.2 Hz, 2H), 1.53 (s, 3H), 1.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 137.3, 131.3, 128.8, 120.9, 93.6, 80.4, 32.7, 29.6, 25.9, 24.9, 21.3.

1-(cyclohexylethynyl)-3-methoxybenzene (4e) : Following general procedure, The product was purified by flash column chromatography on silica gel (ethyl acetate:petroleum ether = 1:50) and **1e** : **2a** = 1:46, obtained in 42 % yield as a colorless oil (17.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.17 (t, *J* = 7.9 Hz, 1H), 6.99 (d, *J* = 7.6 Hz, 1H), 6.92 (s, 1H), 6.81 (d, *J* = 8.3 Hz, 1H), 3.79 (s, 3H), 2.58 (s, 1H), 1.92 – 1.84 (m, 2H), 1.76 (d, *J* = 4.7 Hz, 2H), 1.53 (d, *J* = 9.5 Hz, 3H), 1.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.2, 129.1, 125.1, 124.1, 116.3, 114.0, 94.3, 80.4, 55.2, 32.6, 29.6, 25.9, 24.9. HRMS calcd for C₁₅H₁₈O [M + H]⁺214.1358; found: 214.1361.

4-(cyclohexylethynyl)biphenyl (4f) : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1f** : **2a** = 1:46, obtained in 60 % yield as a pale yellow oil (31.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, *J* = 7.3 Hz, 2H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 2.63 (s, 1H), 1.99 – 1.87 (m, 2H), 1.79 (s, 2H), 1.57 (s, 3H), 1.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 140.5, 140.0, 131.9, 128.7, 127.4, 126.9, 126.8, 123.0, 95.1, 80.3, 32.7, 29.7, 25.9, 24.9. HRMS calcd for C₂₀H₂₀ [M + H]⁺260.1565; found: 260.1567.

1-chloro-2-(cyclohexylethynyl)benzene (4g) : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1g** : **2a** = 1:46, obtained in 58 % yield as a pale yellow oil (25.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.41 (m, 1H), 7.36 (d, *J* = 8.5 Hz, 1H), 7.20 – 7.14 (m, 2H), 2.68 (s, 1H), 1.88 (d, *J* = 7.8 Hz, 2H), 1.79 (dd, *J* = 9.4, 3.4 Hz, 2H), 1.60 (d, *J* = 10.4 Hz, 3H), 1.39 (d, *J* = 8.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 135.8, 133.1, 129.0, 128.3, 126.2, 123.9, 100.1, 32.4, 29.7, 25.9, 24.6. HRMS calcd for C₁₄H₁₅Cl [M + H]⁺218.0862; found: 218.0864.

1-chloro-4-(2-cyclohexylethynyl)benzene (4h)⁶ : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and **1h** : **2a** = 1:46, obtained in 54 % yield as a colorless oil (23.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 2.56 (s, 1H), 1.87 (d, *J* = 10.9 Hz, 2H), 1.80 – 1.69 (m, 2H), 1.53 (dd, *J* = 23.9, 13.0 Hz, 3H), 1.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 133.2, 132.7, 128.4, 122.6, 95.5, 79.4, 32.5, 29.6, 25.8, 24.8.

4-(cyclohexylethynyl)benzaldehyde (4i) : Following general procedure, The product was purified by flash column chromatography on silica gel (ethyl acetate:petroleum ether = 1:50) and **1i** : **2a** = 1:46, obtained in 39 % yield as a pale yellow oil (16.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 9.98 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 8.1 Hz, 2H), 2.62 (s, 1H), 1.89 (d, *J* = 10.3 Hz, 2H), 1.75 (dd, *J* = 9.1, 4.2 Hz, 2H), 1.59 – 1.49 (m, 3H), 1.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.5, 132.4, 132.0, 130.6, 129.4, 99.2, 80.0, 32.4, 29.6, 25.8, 24.8. HRMS calcd for C₁₅H₁₆O [M + H]⁺212.1201; found:212.1204.

(p-Anisyl)cyclohexylacetylene $(4j)^7$: Following general procedure, The product was purified by flash column chromatography on silica gel (ethyl acetate:petroleum ether = 1:50) and 1j: 2a = 1:46, obtained in 41 % yield as a pale yellow oil (18.5 mg). ¹H NMR (600 MHz, DMSO) δ 7.89 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 2.66 (s, 1H), 2.55 (s, 3H), 1.81 (s, 2H), 1.66 (s, 2H), 1.53 – 1.42 (m, 3H), 1.32 (d, J = 8.1 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 197.1, 131.9, 131.4, 128.3, 125.8, 97.9, 84.3, 39.7, 31.9, 28.8, 26.6, 25.2.

1-(Cyclohexylethynyl)-4-(trifluoromethyl)benzene (4k)⁸ : Following general procedure, The product was purified by flash column chromatography on silica gel (petroleum ether) and 1k : 2a = 1:46, obtained in 70 % yield as a pale yellow solid (35.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 2.60 (s, 1H), 1.93 – 1.84 (m, 2H), 1.80 – 1.71 (m, 2H), 1.54 (d, J = 10.7 Hz, 3H), 1.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 131.7, 129.2, 128.0, 125.04 (q, J = 3.7 Hz), 124.2, 97.2, 79.4, 32.5, 29.6, 25.8, 24.8.

2-(cyclohexylethynyl)benzonitrile (4l) : Following general procedure, The product was purified by flash column chromatography on silica gel (ethyl acetate:petroleum ether = 1:50) and **1l** : **2a** = 1:46, obtained in 61 % yield as a pale yellow oil (25.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 2.6 Hz, 2H), 7.33 (dd, *J* = 10.6, 5.7 Hz, 1H), 2.69 (s, 1H), 1.90 (d, *J* = 7.5 Hz, 2H), 1.82 – 1.75 (m, 2H), 1.65 – 1.54 (m, 3H), 1.39 (d, *J* = 8.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 132.4, 132.1 (d, *J* = 8.3 Hz), 128.1, 127.4, 117.7, 115.4, 101.8, 77.2, 32.2, 29.7, 25.8, 24.6. HRMS calcd for C₁₅H₁₅N [M + H]⁺209.1204; found:209.1206.

References:

1. Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330.

2. Hatakeyama, T.; Okada, Y.; Yoshimoto, Y.; Nakamura, M. Angew. Chem. Int. Ed. 2011, 50, 10973.

- 3. Wan, M.; Meng, Z.; Lou, H.; Liu, L. Angew. Chem. Int. Ed. 2014, 126, 14065.
- 4. Vaillant, F. L.; Courant, T.; Waser, J. Angew. Chem. Int. Ed. 2015, 54, 11200.
- 5. Jia, K.; Zhang, F.; Huang, H.; Chen, Y. J. Am. Chem. Soc. 2016, 138, 1514.
- 6. Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem. Commun. 2015, 51, 5275.
- 7. Rao, M. L.N.; Jadhav, D. N.; Dasgupta, P. Org. Lett. 2010, 12, 2048.
- 8. Melzig, L.; Metzger, A.; Knochel, P. Chem. Eur. J. 2011, 17, 2948

¹H NMR, ¹³C NMR Spectra of products

133.29 132.77 132.77 132.77 132.77 122.64 122.64 122.64 95.96 95.96 95.96 95.96 95.96 95.96 95.96 95.96 95.96 95.97 95.96 95.97 95.96 95.97 95.96 96.97 96.97 97.00 70.92 28.07 28.07 28.07 28.07 28.07 28.07 29.09 20.96 11.86

