Supplementary Information

New degradation compounds from lignocellulosic biomass pretreatment: Routes for

formation of potent oligophenolic enzyme inhibitors

Helena Rasmussen^a, David Tanner^b, Hanne R. Sørensen^a and Anne S. Meyer^{c*}

^a DONG Energy, Kraftværksvej 53, DK-7000 Fredericia, Denmark

^b Dept. of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark.

^c Center for BioProcess Engineering, Dept. of Chemical and Biochemical Engineering, Technical University

of Denmark, DK-2800 Lyngby, Denmark.

*Corresponding author: e-mail: am@kt.dtu.dk; Tel: (+45) 45 25 2800

S1 Figure 1. Base peak chromatograms (negative ionisation) of fractions from solvent extractions	2
S1 Table 1. LC-MS/MS negative ionisation, 2-butanone fraction.	3
S1 Table 2. LC-MS/MS negative ionisation, water fraction from 2-butanone extraction.	4
S1 Table 3. Proposed MS/MS fragments	5
S1 Table 4. Compounds in the water fraction from 2-butanone extraction and 2-butanone extraction in the	ne
retention time region from 3.7-5.5 minutes	17
S1 Figure 2. HPLC chromatogram with refractive index detection, anomeric protection	19
S1 Figure 3. Flow chart of the pilot plant pretreatment of wheat straw and the laboratory extraction of Lfl-	ŀΡ
(Liquid from Hydrothermal Pretreatment).	19

S1 Table 1. LC-MS/MS negative ionisation, 2-butanone fraction. Fragment structures are proposed in Table 3.

Entry	Retention time (min)	Accurate mass	С	н	0	DBE	Precursor ion (intensity)	Fragments (intensity)												
1	6.25-6.27	188,10433	9	16	4	2	187,09705 (14)	143,10754 (2)	125,09683	123,08135 (8)	97,06552									
2	6.31-6.33	236,03176	11	8	6	8	235,02448	191,03442	(100)	(0)	(10)									
3	6.37-6.42	240,13576	13	20	4	4	239,12848	195,13854	151,1123	123,08097	109,06533									
4	6.46-6.48	244,13060	12	20	5	3	243,12332	225,11264	207,10204	199,13336	181,12275	163,11216	99,00808							
5	5.53-5.63	266,07894	13	14	6	7	265,07166	250,04776 (3)	247,06071	221,08136	203,07075	193,04996	178,02649	175,03944	160,01592	149,06008	134,0366			
6	6.28-6.30	276,09953	15	16	5	8	275,09225	231,1023	(4) 216,07859 (30)	215,07114	203,07103	188,04753	(00) 107,04969 (10)	(14)	(0)	(40)	(00)			
7	6.04-6.09	294,10997	15	18	6	7	293,10269 (4)	275,09254 (8)	(30) 249,11306 (12)	(00) 231,10243 (24)	216,07891	(3) 163,07601 (10)	(10) 149,06028 (40)	134,03677	131,03439	130,02661	125,06032	123,04469	113,06021	99,0446 (20)
8	5.44-5.52	296,08956	14	16	7	7	295,08228 (2)	235,06073	205,05010	(24) 163,03936 (100)	(20) 145,02881 (38)	(10) 119,04955 (36)	(40)	(10)	(20)	(00)	(20)	(34)	(100)	(20)
9	7.26-7.30	302,07866	16	14	6	10	301,07138	286,04786	(4) 268,03753	(100) 257,04529	(30)	(50)								
10	6.25-6.27	306,11006	16	18	6	8	305,10278	290,07926 (8)	261,11277	(4) 246,0893 (18)	245,08158	231,0658								
11	6.06-6.09	308,05290	14	12	8	9	307,04562	289,03492	263,05571	245,04506	219,06572	201,05522								
12	5.53-5.63	326,09981	15	18	8	7	325,09253 (1)	265,07184	235,06097 (7)	193,05008	(40) 175,03971 (32)	(1) 160,01625	149,06035 (14)	134,03681						
13	5.78-5.80	328,09429	18	16	6	11	327,08701 (10)	283,09729	(7) 239,10756 (8)	163,03944	(02) 119,04959 (42)	(0)	(1-)	(10)						
14	5.92-5.97	328,09429	18	16	6	11	327,08701	309,07652	283,09722	265,08674 (74)	(42) 237,09171 (20)	211,07598	163,03945	143,03945	119,04957	93,03396 (21)				
15	7.63-7.70	330,07509	17	14	7	11	(100) 329,06781 (40)	314,04321	299,02028	(14)	(20)	(10)	(23)	(23)	(13)	(21)				
16	6.56-6.60	342,10994	19	18	6	11	(40) 341,10266 (40)	326,07909	323,09197	311,05567	309,07647 (48)	297,11269	294,05306	282,08942	267,06603					
17	6.58-6.64	354,11003	20	18	6	12	353,10275	338,07918	323,05553 (60)	310,08417	(40) 294,08935 (36)	(30) 279,06586 (38)	(02)	(100)	(12)					
18	5.98-6.02	358,10515	19	18	7	11	357,09785	339,08689	313,10771 (44)	(10) 295,09717 (25)	280,07378	254,09451	193,05011 (10)	163,03949 (12)	119,04959 (16)					
19	6.60-6.65	372,12044	20	20	7	11	371,11316	356,09000	341,06621	(20) 339,08698 (30)	327,12339	324,06356	312,10001	(12) 297,07654 (64)	294,08957	279,06603 (6)				
20	5.92-5.97	372,12053	20	20	7	11	371,11325	356,08998 (14)	353,10282	341,10258	327,12328	(20) 326,07928 (31)	312,09995	(04) 309,11293 (36)	297,11276	(0) 294,08948 (66)	282,08945 (24)	279,06596 (40)	173,06023	123,04453
21	7.41-7.43	384,12044	21	20	7	12	383,11316	368,08932	353,06612	229,05020	(00)	(01)	(07)	(00)	(12)	(00)	(24)	(40)	(27)	(12)
22	6.60-6.65	384,12062	21	20	7	12	383,11334 (14)	368,08959	353,06676	352,09528 (60)	338,07910 (32)	337,07167 (92)	324,09976 (7)	309,07644 (16)						
23	5.78-5.80	388,11531	20	20	8	11	387,10803	369,09787	354,07428 (30)	343,11832 (35)	325,10786 (70)	(6 <u>2</u>) 310,08443 (65)	295,06082	282,08945 (43)	193,05017 (65)	173,06131 (21)	159,04464 (15)	149,06022 (24)	134,03673 (23)	123,0445
24	5.84-5.91	388,11540	20	20	8	11	387,10812	343,11857	(30) 299,12878 (4)	284,10534 (9)	193,05013	178,02676	149,06028	134,03679	(00)	(= ·)	(10)	(= -)	(20)	()
25	5.92-5.97	388,11546	20	20	8	11	387,10818	369,09748 (18)	354,07416	343,11805 (6)	325,10755 (30)	(0) 310,08415 (25)	282,08933	(<u></u>) 271,09741 (5)	193,05001 (20)	173,06023 (17)	159,04457 (8)	134,03663 (5)	123,04451 (7)	
26	5.63-5.73	402,13097	21	22	8	11	401,12369	386,10059	(8) 383,11344 (45)	371,11343	357,13426	(10) 342,11047 (87)	339,12345	327,12299	(120) 324,09995	312,10007	(0) 309,07664 (43)	217,05026	203,03457	173,06027
27	7.77-7.80	480,13978	26	24	9	15	479,1325	464,11117	(40) 449,08776 (4)	355,08239 (41)	(60) 340,05855 (6)	(07)	(00)	(10)	(00)	(20)	(40)	(10)	(0)	(2-7)
28	7.29-7.36	508,13628	27	24	10	16	507,12900 (100)	492,10619 (36)	477,08256	341,06650 (24)	(-)									
29	6.40-6.45	528,12630	26	24	12	15	527,11902 (69)	509,10795 (6)	329,06609 (100)	(<u>-</u> ·) 185,04494 (24)	167,03436 (2)									
30	6.94-6.99	548,16805	30	28	10	17	547,16077 (3)	503,17078 (6)	401,12355 (44)	383,11315 (100)	371,11332 (16)	368,0899 (13)	357,13427 (12)	339,12312 (60)	324,09977 (56)	309,07643 (8)	163,03948 (15)	145,02882 (79)	119,04960 (6)	117,03393 (9)

S1 Table 2. LC-MS/MS negative ionisation, water fraction from 2-butanone extraction. Shaded fragments are in common with LC-MS/MS fragments from xylooligosaccharide standards(xylobiose to xylohexaose).

Retention Time (min)	Accurate mass	С	н	0	DBE	Compound	Fragment	ts													
1.97-1.99	150,05203	5	10	5	1	xylose	131,03508	129,01977	101,02457	85,02951											
1.85-1.87	180,06282	6	12	6	1	glucose	161,04527	150,95383	134,98767	131,03461	122,95918	113,02392	101,02410	97,02912	89,02398	85,02911					
1.79-1.81	282,09505	10	18	9	2	xylobiose	203,05728	131,03503	112,98583	101,02453	85,02950										
1.91-1.96	460,14241	16	28	15	3	xylotriose	335,09823	263,07716	203,05581	149,04506	131,03442	113,02387	101,02386	85,02897							
3.94-3.96	502,15434	18	30	16	4	1 acetyl xylotriose	377,11137	335,10167	305,08741	263,07894	149,04559	131,03513	113,02467	101,02460	85,02948						
2.75-2.77	546,17928	20	34	17	4	xylotetraose	467,14017	395,11896	335,09780	263,07701	203,05563	149,04497	131,03436	113,02380	101,02379	85,02890					
3.94-3.96	634,19679	23	38	20	5	1 acetyl xylotetraose	527,16246	509,15079	467,14007	437,12956	395,11893	377,10861	335,09898	305,08789	263,07776	203,05563	149,04497	131,03436	113,02380	101,02379	85,02890
3.13-3.21	678,22157	25	42	21	5	xylopentaose	527,16135	467,14013	395,11896	263,07702	131,03437	101,02381									
3.94-3.96	766,23934	28	46	24	6	1 acetyl xylotepentaose	641,19406	599,18158	569,17220	509,15079	467,14007	437,12956	395,11893	377,10861	305,08789	263,07776					
3.31-3.35	810,26436	30	50	25	6	xylohexaose	731,22514	719,22522	659,20411	641,19357	623,18283	611,18273	599,18294	527,16164	509,15109	467,14041	395,11922	377,10893	263,07721		
4.00-4.03	894,28456	34	54	27	8	2 acetyl xylohexaose	731,22514	719,22522	659,20411	641,19357	623,18283	611,18273	599,18294	527,16164	509,15109	467,14041	395,11922	377,10893	263,07721		

S1 Table 3. Proposed MS/MS fragments (continued).

HO Chemical Formula: $C_{18}H_{16}O_6$

15

HO.

óн

0

0

0

0

m/z 267 (-2CH₃ ∙, -CO₂)

O۰

٠ò

OH

Ó,

0

_____ |-н+

0.

°O'

0·

O٠

∕ó m/z 339

`O

C ٠ò

ÓН

óн m/z 309

ÓН

m/z 163

Retention time (min)	lons, m/z [M- H ⁺] ⁻ (relative intensity)	Fraction	Compounds
3.95	455.14203 (3), 587.18378 (12), 719.22626 (14), 851.26862	Water fraction	Pentoses + 1 acetyl, DP 3, DP 4, DP 5, DP 6, DP 7, DP 8.
	(9), 983.31140 (6),1115.35315 (2)		
3.95	455.14233 (4), 587.18451 (6)	2-butanone	Pentoses + 1 acetyl, DP 3, DP 4.
		fraction	
4.14	629.19318 (16), 761.23517 (29), 893.27692 (20), 1025.31921	Water fraction	Pentoses + 2 acetyl, DP 4, DP 5, DP 6, DP 7, DP 8.
	(12), 1157.36060 (5),		
	1199.37134 (8), 1331.41345 (6), 1463.45447 (4)		Pentoses + 3 acetyl, DP 8, DP 9, DP 10.
4.14	629.19604 (0.1)	2-butanone	Pentose + 2 acetyl, DP 4
		fraction	
4.54	803.24573 (4), 935.28717 (4),	Water fraction	Pentoses + 3 acetyl, DP 5, DP 6.
	1249.38831 (7), 1381.43054 (3)		Feruloyl substituted pentoses, DP 8, DP 9.
4.68	985.30377 (20), 1117.34460 (4), 1249.38843 (4)	Water fraction	Feruloyl substituted pentoses, DP 6, DP 7, DP 8.
4.88	691.20862 (24),	Water fraction	Cumaroyl substituted pentose DP 4.
	721.21936 (32), 853.26135 (100),		Feruloyl substituted pentose DP 4, DP 5.
	1027.31409 (8), 1159.35547 (12), 1291.39734 (4)		Feruloyl + 1 acetyl substituted pentose DP 6, DP 7, DP 8.
4.98	559.16693 (6),	2-butanone	Cumaroyl substituted pentose DP 3.
	721.21985 (5)	fraction	Feruloyl substituted pentose DP 4.
5.00	721.21936 (100),	Water fraction	Feruloyl substituted pentose DP 4.
	1027.31445 (9)		Feruloyl + 1 acetyl substituted pentose DP 7.

S1 Table 4. Compounds in the water fraction from 2-butanone extraction and 2-butanone extraction in the retention time region from 3.7-5.5 minutes.

Retention time (min)	lons, m/z [M- H ⁺] ⁻ (relative intensity)	Fraction	Compounds
5.05	589.17706 (100), 721.21906 (16), 853. 26074 (7), 1117.34448	Water fraction	Feruloyl substituted pentoses, DP 3, DP 4, DP 5, DP 7.
	(10)		
	895.27173 (16), 1027.31494 (8), 1159.35559 (5), 1291.39893		Feruloyl + 1 acetyl substituted pentoses, DP 5, DP 6, DP 7, DP 8,
	(4), 1423.43689 (3)		DP 9.
5.05	589.17737 (30)	2-butanone	Feruloyl substituted pentose DP 3.
		fraction	
5.27	325.09247 (100),	2-butanone	Feruloyl substituted pentose DP 1.
	559.16699 (17),	fraction	Cumaroyl substituted pentose DP 3.
	763.23035 (6),		Feruloyl + 1 acetyl substituted pentose DP 4.
5.47	295.08221 (15),	2-butanone	Cumaroyl substituted pentose DP 1.
	457.13538 (8)	fraction	Feruloyl substituted pentose DP 2.

S1 Figure 2. HPLC chromatogram with refractive index detection, anomeric protection.

S1 Figure 3. Flow chart of the pilot plant pretreatment of wheat straw and the laboratory extraction of LfHP (Liquid from Hydrothermal Pretreatment). The dry matter (DM) contents in LfHP are the w/w % of dissolved compounds (as the oligophenolic compounds and xylooligosaccharides) in the LfHP (H₂O). The LfHP is evaporated in order to obtain a more concentrated solution for further pilot plant processing. Subsequent to pilot plant evaporation a representative sample (170 g) was taken from the concentrated LfHP fraction to conduct laboratory evaluation of compounds in the LfHP. Boxes in blue color are laboratory conducted experiments: As indicated, the dry matter content of the 170 g sample constituted 16.6 % by weight (as determined from drying via evaporation of the liquid), and this amount of dry matter was equivalent to 28.22 g of material which was distributed into two fractions after extraction with 2 x 160 g 2-butanone as follows: 22 g in the freeze dried aqueous fraction; 2.7 g in the 2-butanone fraction, and with a loss of 3.5 g dry matter in total. The 22 g in the freeze dried aqueous fraction of the sample was equivalent to approximately 78% of the dry matter in the concentrated LfHP, whereas the 2.7 g in the 2-butanone fraction constituted just above 9.5% of the dry matter in the concentrated LfHP.