Supporting Information

Catalytic degradation of polyurea: Synthesis of N-substituted carbamates with CuO-ZnO as the catalyst

Qinghe Li, Peixue Wang, Liu Shimin, Yuqing Fei and Youquan Deng*

State Key Laboratory for Oxo Synthesis and Selective Oxidation, State Key Laboratory of Solid Lubrication, Qingdao Center of Resource Chemistry & New Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Table of contents

I. 1H NMR characterization results of products..S2
II. TGA characterization results of product..S6
III. 3N$_2$ adsorption-desorption analysis of as-prepared catalysts................................S6
IV. TGA analysis of Cu(Im)$_2$..S7
V. GC-MS copies of carbamate products..S7
VI. TGA, XPS, SEM, AFM and FT-IR characterization results of catalysts.........................S10
VII. 1H and 13C NMR of EHDC obtained from the degradation of PU-HDA for 2 and 18 h...S12
VIII. The thermal properties of the isolated and pure EHDC...S14
I. 1H NMR characterization results of products

1H NMR spectra of the carbamates spectra were measured using an INOVA NMR system at 400 MHz. All spectra were recorded in CD$_3$OD and chemical shifts (δ) are reported in ppm relative to tetramethylsilane referenced to the residual solvent peaks.

1) Dimethyl-hexane-1, 6-diyl dicarbamate

$$\begin{align*}
\text{O} & \text{H} \text{N} \text{O} \\
\text{O} & \text{H} \text{N} \text{O} \\
\text{H} & \text{N} \text{O} \\
\end{align*}$$

1H NMR (400 MHz, CD$_3$OD): δ 4.86 (s, 1H), 3.63 (s, 3H), 3.08 (m, 2H), 1.47 (m, 2H), 1.33 (m, 2H).

2) Diethyl-hexane-1, 6-diyl dicarbamate

$$\begin{align*}
\text{H} & \text{N} \text{O} \\
\text{H} & \text{N} \text{O} \\
\text{H} & \text{N} \text{O} \\
\end{align*}$$

1H NMR (400 MHz, CD$_3$OD): δ 4.87 (s, 1H), 4.04 (q, 2H), 3.06 (t, 2H), 1.47 (m, 2H), 1.31 (m, 2H), 1.21 (t, 3H).
3) Dibutyl-hexane-1, 6-diyl dicarbamate

$\text{1H NMR (400 MHz, CD}_3\text{OD): } \delta 4.86 (s, 1H), 4.00 (t, 2H), 3.06 (t, 2H), 1.58 (m, 2H), 1.47 (m, 2H), 1.38 (m, 2H), 1.34 (m, 2H), 0.93 (t, 3H).$

4) Diethyl-4, 4'-methylenebis (cyclohexane-4, 1-diyl) dicarbamate
1H NMR (400 MHz, CD_{3}OD): \(\delta \ 4.86 \text{ (s, 1H), 4.03 (q, 2H), 3.60 (m, 2H), 1.89 (m, 1H), 1.72 (m, 1H), 1.56 (m, 1H), 1.23 (m, 1H), 1.15 (t, 3H), 1.07 (m, 1H), 0.95 (dd, 2H).} \\

5) 3-(aminomethyl)-3, 5, 5-trimethylcyclohexylcidicarbamate \\

1H NMR (400 MHz, CD_{3}OD): \(\delta \ 4.86 \text{ (s, 1H), 4.05 (q, 2H), 3.75 (m, 1H), 2.83 (d, 1H), 1.59 (d, 1H), 1.22 (dd, 1H), 1.16 (dd, 1H), 1.03 (d, 1H), 1.00 (t, 3H), 0.98 (d, 1H), 0.94 (s, 3H), 0.87 (s, 3H).}
6) Dimethyl 2-methyl-1, 4-phenylenedicarbamate

1H NMR (400 MHz, CD$_3$OD): δ 7.52 (s, 1H), 7.16 (s, 1H), 7.07 (d, 1H), 4.86 (d, 1H), 3.72 (s, 3H), 2.12 (s, 3H).

Figure S1. 1H NMR copies of the carbamate products
II. TGA Characterization results of product

Figure S2. TGA copy of the carbamate products

III. N$_2$ adsorption-desorption analysis of as-prepared catalyst

Figure S3. N$_2$ adsorption-desorption analysis result of various catalysts.
IV. TGA analysis of Cu(Im)$_2$

![TGA analysis of Cu(Im)$_2$](image)

Figure S4. TGA analysis of Cu(Im)$_2$

V. GC-MS copies of carbamate products

![GC-MS copies of carbamate products](image)

- Dimethyl hexane-1,6-diyl dicarbamate
 - $m/z = 232$

- Diethyl hexane-1,6-diyl dicarbamate
 - $m/z = 260$
Figure S5. GC-MS copies of carbamate products
Figure S6. GC-MS copies of carbamate products
VI. TGA, XPS, SEM, AFM and FT-IR characterization results of catalysts

Figure S7. TGA analysis of CuO-ZnO catalysts, (a) CuO-ZnO-700, (b) CuO-ZnO-500, (c) 2CuO-ZnO-500, (d) CuO-2ZnO-500, and (e) CuO-ZnO-300.

Figure S8. X-ray photoelectron spectroscopy (XPS) characterization of CuO-ZnO-500.

Figure S9. Scanning electron microscope (SEM) characterization of CuO-ZnO-500
Figure S10. Atomic force microscope (AFM) characterization of CuO-ZnO catalysts, (A) CuO-ZnO-300, (B) CuO-ZnO-700, (C) 2CuO-ZnO-500, (D) CuO-2ZnO-500, (E) CuO-ZnO-500, (F) 3D analysis of CuO-ZnO-500. Insert: Roughness analysis of the corresponding samples.

Figure S11. Fourier transform infrared spectroscopy (FT-IR) characterization conducted with pyridine as the alkaline adsorbate. (a) CuO-ZnO-300, (b) CuO-ZnO-500, (c) CuO-ZnO-700, (d) 2CuO-ZnO-500 and (e) CuO-2ZnO-500. Full reference lines shown for Lewis acid sites (1616 cm\(^{-1}\), 1457 cm\(^{-1}\)), Lewis or Brønsted acid sites (1575 cm\(^{-1}\)), Brønsted acid sites (1540 cm\(^{-1}\)).
Figure 12 a) 1H NMR (400 MHz, CD$_3$OD) of EHDC obtained from the degradation of PU-HDA for 2 h: δ 4.85 (s, 1H), 4.07 (q, 2H), 3.09 (t, 2H), 1.47 (m, 2H), 1.34 (m, 2H), 1.24 (t, 3H).

Figure 12 b) 13C NMR (101 MHz, CD$_3$OD) of EHDC obtained from the degradation of PU-HDA for 2 h: δ 157.81, 60.16, 40.19, 29.47, 26.09, 13.63 ppm.
Figure 12 c) 1H NMR (400 MHz, CD$_3$OD) of EHDC obtained from the degradation of PU-HDA for 18 h: δ 4.85 (s, 1H), 4.07 (q, 2H), 3.08 (t, 2H), 1.49 (m, 2H), 1.38 (m, 2H), 1.24 (t, 3H).

Figure 12 d) 13C NMR (101 MHz, CD$_3$OD) of EHDC obtained from the degradation of PU-HDA for 18 h: δ 157.82, 60.16, 40.19, 29.67, 26.08, 13.62 ppm. The peaks at 29.99 and 39.50 ppm might be assigned to the PU-HDA.
Figure S13. The thermal properties of the isolated and pure EHDC