Supporting Information

Eco-friendly synthesis of aminoindamine and indoaniline dyes mediated by CotA-laccase

Ana Catarina Sousa^[a,b], M.Fátima M.M. Piedade^[b,c], Lígia O. Martins^[d] and M. Paula Robalo* ^[a,b]

Table of Contents

- 1. Proposed pathway for the cross-coupling reactions mediated by laccases
- 2. X-ray crystal structure data
- 3. 1D and 2D NMR and MS spectra

Dr. A.C. Sousa, Dr. M.P. Robalo*
Área Departamental de Engenharia Química
ISEL-Instituto Superior de Engenharia de Lisboa, Instituto
Politécnico de Lisboa
Rua Conselheiro Emídio Navarro, 1
1959-007 Lisboa (Portugal)
E-mail: mprobalo@deq.isel.ipl.pt
Dr. A.C. Sousa, Dr. M.F.M. Piedade, Dr. M.P. Robalo
Centro de Química Estrutural, Complexo I
Instituto Superior Técnico, Universidade de Lisboa
Av. Rovisco Pais
1049-001 Lisboa (Portugal)
Dr. M.F.M. Piedade
Departamento de Química e Bioquímica
Faculdade de Ciências, Universidade de Lisboa
Campo Grande,
1749-016 Lisboa (Portugal)
Dr. L.O Martins
Instituto de Tecnologia Química e Biológica António Xavier
Universidade Nova de Lisboa
Av. da República
2780-157 Oeiras (Portugal)

1. Proposed pathway for the cross-coupling reactions mediated by laccases

The first step of the enzyme-mediated formation of the aminoindamine and indoaniline dyes (Figure S1), is the enzymatic oxidation of the primary intermediate (oxidation base or developer) under Hatom abstraction (i.e. 1H⁺ + 1e⁻) promoting the formation of the benzoguinone-diimine intermediate (A). The nature of the specific reactive species involved in hair colouration with 1,4-PDA or other related oxidation bases is still under debate.¹ Nevertheless, the conjugated acid of the pbenzoquinonediimine has been proposed to this role, which is supported by the fact that the diiminium ion (**AH**⁺) is more electrophilic than the correspondent diamine **A**).²⁻⁶ The reactive species is further involved in a cross-coupling reaction, via electrophilic attack of the iminium group on the electron-rich coupler preferentially on the p-position to an amino or hydroxyl group, yielding the dinuclear leuco dyes (B) which result in the final indoaniline or aminoindamine chromophores (C) through a new oxidation step. The oxidation bases are expected to be less reactive than couplers and therefore no self-coupling in their presence occurs. When the meta couplers are blocked with a para substituent to one of the functional amino and/or hydroxyl groups (m, p-substituted couplers), the guinone-imine/diimine dimers (**C**) were found to be the final products.^{1,7} The dyes formed from the *meta* difunctional couplers, having no substituents *para* to either of the functional groups, undergo further reaction yielding the trinuclear indo dyes (D). These dyes could be formed either by 1,4-addition of an unchanged diamine molecule to the aminoindamine intermediate or by electrophilic attack of the protonated diimine (AH⁺) on the dinuclear leuco dye (B). Nevertheless, the latter suggestion is more consistent with the first step of the proposed pathway and the higher reactivity of the (AH⁺) species towards the couplers than the neutral diimine (A).

The heterocoupling reactions with the naphthalene couplers (1-Nol and 1-NA), presumably follow a similar mechanistic pathway. The electrophilic attack of AH^+ species on the 4-position of the naphthalene coupler leads to the naphthol leuco derivative (E), which suffers a new addition leading to the final product, the trimer (F).

For the heterocoupling reactions involving the 4-AP as the primary intermediate, a similar pathway can be proposed, considering the enzymatic formation of the benzoquinone-monoimine intermediate.

- 1 O.J.X. Morel, R.M. Christie, Chem. Rev., 2011, 111, 2537.
- 2 J.F. Corbett, J. Soc. Cosmet. Chem., 1973, 24, 103.
- 3 K.C. Brown, J. F. Corbett, J. Soc. Cosmet. Chem., 1979, 30, 191.
- 4 J.F. Corbett, J. Chem. Soc. Perkin II, 1972, 539.
- 5 J.F. Corbett, J. Chem. Soc. (B), 1969, 818.
- 6 J.F. Corbett, J. Chem. Soc. (B), 1969, 823.
- 7 J.F. Corbett, Dyes & Pigments, 1999, 41, 127.

Fig. S1 Proposed pathway for the heterocoupling reactions involving the primary intermediates 1,4–PDA or 2,5-DAT and *meta-* or *meta,para*-substituted and naphthalene couplers, catalysed by CotA-laccase.

2. X-ray crystal structure data

_

Empirical formula	$C_{13}H_{13}N_{3}O$
Formula weight	227.26
Т (К)	150(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P2(1)/n
a (Å)	13.5515(11)
b (Å)	3.9004(3)
c (Å)	20.9865(16)
β (°)	94.725(4)
V (Å ³)	1105.5(2)
Z	4
D _{calc} (Mg/m ³)	1.365
μ (Mo Ka) (mm ⁻¹)	0.090
Theta range for data collection (°)	3.18 to 28.40
Limiting indices	-18<=h<=16,
	-5<=k<=5,
	-28<=I<=28
Number of reflections collected	10590
Number of unique data	2710 [R(int) = 0.0295]
Completeness to theta = 28.40°	97.7 %
Data / restraints / parameters	2710 / 0 / 169
Final R_1^a , ωR_2^b (I ≥ 2 δ)	0.0400, 0.1017
Goodness-of-fit (GOF) on F ²	1.043
Largest diff. peak and hole (eÅ-3)	0.322 and -0.237 e3
$^{a} R_{1} = \sum F_{o} - F_{c} / \sum F_{o} .$	

Table S1. Crystal Data and structure refinement details for compound 8

^b $\omega R_2 = [\sum [\omega (F_0^2 - F_c^2)^2]] / \sum [\omega (F_0^2)^2]^{1/2}$

O(1)-C(10)	1.2531(13)
N(2)-C(7)	1.2948(14)
N(2)-C(4)	1.4003(14)
N(1)-C(1)	1.3929(14)
N(3)-C(8)	1.3363(15)
C(10)-C(9)	1.4199(17)
C(10)-C(11)	1.4890(16)
C(9)-C(8)	1.3684(16)
C(8)-C(7)	1.4902(15)
C(7)-C(12)	1.4603(16)
C(4)-C(5)	1.4041(16)
C(4)-C(3)	1.4046(15)
C(3)-C(2)	1.3778(15)
C(2)-C(1)	1.3985(16)
C(1)-C(6)	1.3958(15)
C(12)-C(11)	1.3438(15)
C(11)-C(13)	1.4928(16)
C(6)-C(5)	1.3780(15)
C(7)-N(2)-C(4)	123.94(10)
O(1)-C(10)-C(9)	122.10(10)
O(1)-C(10)-C(11)	119.20(11)
C(9)-C(10)-C(11)	118.68(10)
C(8)-C(9)-C(10)	122.53(10)
N(3)-C(8)-C(9)	123.93(10)
N(3)-C(8)-C(7)	116.73(10)
C(9)-C(8)-C(7)	119.30(10)
N(2)-C(7)-C(12)	127.12(10)
N(2)-C(7)-C(8)	115.58(10)
C(12)-C(7)-C(8)	117.26(10)
N(2)-C(4)-C(5)	123.94(10)
N(2)-C(4)-C(3)	117.69(10)
C(5)-C(4)-C(3)	117.97(10)
C(2)-C(3)-C(4)	120.63(11)
C(3)-C(2)-C(1)	121.05(10)
N(1)-C(1)-C(6)	120.36(11)
N(1)-C(1)-C(2)	121.22(10)
C(6)-C(1)-C(2)	118.40(10)
C(11)-C(12)-C(7)	122.66(10)
C(12)- $C(11)$ - $C(10)$	119.41(11)
C(12) - C(11) - C(13)	123.19(10)
C(10) - C(11) - C(13)	117.4U(1U)
	120.74(11)
0(0)-0(0)-0(4)	121.07(10)

Tahle	S 2	Bond	lenaths	٢Å١	and	angles	[dea]	for	compound 8	{
Iable	52.	Donu	ICHYUIS	נרא	anu	anyics	լսեցյ	101	compound o	

O(1)-C(10)-C(9)-C(8)	-176.80(11)
C(11)-C(10)-C(9)-C(8)	1.90(18)
C(10)-C(9)-C(8)-N(3)	178.11(11)
C(10)-C(9)-C(8)-C(7)	-4.42(18)
C(4)-N(2)-C(7)-C(12)	-13.56(18)
C(4)-N(2)-C(7)-C(8)	168.73(10)
N(3)-C(8)-C(7)-N(2)	-1.03(15)
C(9)-C(8)-C(7)-N(2)	-178.68(10)
N(3)-C(8)-C(7)-C(12)	-178.97(10)
C(9)-C(8)-C(7)-C(12)	3.38(16)
C(7)-N(2)-C(4)-C(5)	-39.94(17)
C(7)-N(2)-C(4)-C(3)	147.49(11)
N(2)-C(4)-C(3)-C(2)	174.31(10)
C(5)-C(4)-C(3)-C(2)	1.29(17)
C(4)-C(3)-C(2)-C(1)	-4.08(18)
C(3)-C(2)-C(1)-N(1)	-177.13(11)
C(3)-C(2)-C(1)-C(6)	4.08(17)
N(2)-C(7)-C(12)-C(11)	-177.43(11)
C(8)-C(7)-C(12)-C(11)	0.23(17)
C(7)-C(12)-C(11)-C(10)	-2.73(17)
C(7)-C(12)-C(11)-C(13)	176.74(10)
O(1)-C(10)-C(11)-C(12)	-179.47(11)
C(9)-C(10)-C(11)-C(12)	1.79(17)
O(1)-C(10)-C(11)-C(13)	1.03(16)
C(9)-C(10)-C(11)-C(13)	-177.71(11)
N(1)-C(1)-C(6)-C(5)	179.83(11)
C(2)-C(1)-C(6)-C(5)	-1.37(17)
C(1)-C(6)-C(5)-C(4)	-1.36(17)
N(2)-C(4)-C(5)-C(6)	-171.14(10)
C(3)-C(4)-C(5)-C(6)	1.41(17)

Table S3. Torsion angles [deg] for compound 8

3. 1D and 2D NMR and MS spectra

Figure S3 – ¹³C -NMR spectrum of compound 5 in MeOD- d_4 (400MHz)

Figure S4 – COSY-NMR spectrum of compound **5** in MeOD- d_4 (400MHz)

Figure S5 – HSQC-NMR spectrum of compound **5** in MeOD- d_4 (400MHz)

Figure S6 – HMBC-NMR spectrum of compound **5** in MeOD- d_4 (400MHz)

ESI(+)/MS spectrum of compound **5** ($C_{18}H_{17}N_5O$) MW= 319.36 g/mol Positive mode $m/z = 320 [M+H]^+$

Figure S7 – A) ESI(+)/MS spectrum of compound **5** B) MS/MS spectrum of *m/z* 320 of compound **5**

Figure S9 – ¹³C-NMR spectrum of compound **6** in MeOD- d_4 (400MHz)

Figure S10 - COSY-NMR spectrum of compound **6** in MeOD-*d*₄ (400MHz)

Figure S11 - HSQC-NMR spectrum of compound 6 in MeOD-d₄ (400MHz)

Figure S12 - HMBC-NMR spectrum of compound **6** in MeOD- d_4 (400MHz)

ESI(+)/MS spectrum of compound $\boldsymbol{6}$ (C₁₈H₁₆N₄O₂) MW= 320.13 g/mol

Positive mode $m/z = 321 [M+H]^+$

Figure S13 – A) ESI(+)/MS spectrum of compound 6; B) MS/MS spectrum of *m*/z 321 of compound 6

Figure S15 – ¹³C-NMR spectrum of compound **7** in MeOD- d_4 (400MHz)

Figure S16 - HSQC-NMR spectrum of compound 7 in MeOD-d₄ (400MHz)

ESI(-)/MS spectrum of compound 7 ($C_{12}H_{12}N_4$) MW= 212.11 g/mol

```
positive mode m/z = 213 [M+H]^+
```


Compound 8:

Figure S18 - ¹H-NMR spectrum of compound **8** in MeOD- d_4 (400MHz)

Figure S19 – ¹³C-NMR spectrum of compound **8** in MeOD- d_4 (400MHz)

Figure S20 - HSQC-NMR spectrum of compound 8 in MeOD-d₄ (400MHz)

Figure S21 - HMBC-NMR spectrum of compound 8 in MeOD-d₄ (400MHz)

ESI(+)/MS spectrum of compound **8** ($C_{13}H_{13}N_3O$) MW= 227.26 g/mol Positive mode *m/z* = 228 [M+H]⁺, 250 [M+Na]⁺

Figure S22 – A) ESI(+)/MS spectrum of compound 8; B) MS/MS spectrum of *m/z* 227 of compound 8

Compound 9:

Figure S23 - ¹H-NMR spectrum of compound 9 in MeOD- d_4 (400MHz)

Figure S24 – ¹³C-NMR spectrum of compound 9 in MeOD-d₄ (400MHz)

Figure S25 – HSQC-NMR spectrum of compound 9 in MeOD-d₄ (400MHz)

Figure S26 – HMBC-NMR spectrum of compound 9 in MeOD-d₄ (400MHz)

ESI(+)/MS spectrum of compound $\mathbf{9}$ (C₁₃H₁₄N₄) MW= 226.28 g/mol

Figure S27 – A) ESI(+)/MS spectrum of compound 9; B) MS/MS spectrum of *m/z* 227 of compound 9

Figure S29 – ¹³C-NMR spectrum of compound **11** in MeOD- d_4 (400MHz)

Figure S30 – HSQC-NMR spectrum of compound 11 in MeOD-d₄ (400MHz)

ESI(+)/MS spectrum of compound **11** ($C_{22}H_{18}N_4O$) MW= 354.40 g/mol Positive mode m/z = 355 [M+H]⁺, 377 [M+Na]⁺

Figure S31 – A) ESI(+)/MS spectrum of compound 11; B) MS² spectrum of m/z 355 of compound 11; C) MS³ spectrum of m/z 237.

Figure S33 – ¹³C-NMR spectrum of compound **12** in MeOD-d₄ (400MHz)

Figure S34 – HSQC-NMR spectrum of compound 12 in MeOD-d₄ (400MHz)

ESI(+)/MS spectrum of compound **12** ($C_{22}H_{18}N_4$) MW= 338.41 g/mol Positive mode *m/z* = 339 [M+H]⁺

Figure S35 – A) ESI(+)/MS spectrum of compound 12; B) MS/MS spectrum of *m*/z 339 of compound 12.

Compound 13:

Figure S36 - ¹H-NMR spectrum of compound **13** in MeOD- d_4 (400MHz)

Figure S37 – ¹³C-NMR spectrum of compound **13** in MeOD-d₄ (400MHz)

Figure S38 – HSQC-NMR spectrum of compound 13 in MeOD-d₄ (400MHz)

Figure S39 – HMBC-NMR spectrum of compound 13 in MeOD-d₄ (400MHz)

ESI(+)/MS of compound **13** (C₁₃H₁₂N₂O₂) MW=228.25 g/mol

Positive mode $m/z = 229 [M+H]^+$

Figure S40 – A) ESI(+)/MS spectrum of compound 13; B) MS/MS spectrum of *m/z* 229 of compound 13

Compound 14:

Figure S41 - ¹H-NMR spectrum of compound **14** in MeOD- d_4 (400MHz)

Figure S42 – ¹³C-NMR spectrum of compound **14** in MeOD-d₄ (400MHz)

Figure S43 – HSQC-NMR spectrum of compound 14 in MeOD-d₄ (400MHz)

Figure S44 – HMBC-NMR spectrum of compound **14** in MeOD- d_4 (400MHz)

ESI(+)/MS of compound 14 (C₁₃H₁₃N₃O) MW=227.26 g/mol

Figure S45 – A) ESI(+)/MS spectrum of compound 14; B) MS/MS spectrum of *m/z* 228 of compound 14.

Compound 15:

Figure S46 - ¹H-NMR spectrum of compound **15** in MeOD- d_4 (400MHz)

Figure S47 – ¹³C-NMR spectrum of compound **15** in MeOD- d_4 (400MHz)

Figure S48 – HSQC-NMR spectrum of compound 15 in MeOD-d₄ (400MHz)

ESI(+)/MS spectrum of compound **15** (C₁₃H₁₁N₃O) MW = 225.25 g/mol Positive mode m/z = 226 [M+H]⁺

Figure S49 – A) ESI(+)/MS spectrum of compound 15; B) MS/MS spectrum of *m/z* 226 of compound 15

Compound 16:

Figure S50 - ¹H-NMR spectrum of compound **16** in MeOD- d_4 (400MHz)

Figure S51 – ¹³C-NMR spectrum of compound **16** in MeOD-*d*₄ (400MHz)

ESI(-)/MS spectrum of compound 16 (C₁₄H₁₅N₃O) MW = 241.29g/mol

Positive mode $m/z = 242 [M+H]^+$

Figure S52 – A) ESI(+)/MS spectrum of compound 16; B) MS/MS spectrum of *m/z* 242 of compound 16.

Compound 17:

Figure S54 – ¹³C-NMR spectrum of compound **17** in MeOD- d_4 (400MHz)

Figure S55 – HSQC-NMR spectrum of compound **17** in MeOD- d_4 (400MHz)

ESI(+)/MS spectrum of compound **17** ($C_{14}H_{14}N_2O_2$) MW = 242.20 g/mol Negative mode *m*/*z* = 241 [M-H]⁻

241,39 100-90 80-Relative Abundance 70 60 50 242,31 40 243,18 30 266,77 276,82 246,81 20 215,30 235,67 10-199 227.49 0-240 260 200 220 m/z B) 226,07 100-90-80-Relative Abundance 70-60-50-241,11 223,14 40-199,10 30-239,12 20-10 214,15 200,11 197,17 211,15 222,23 242,12 191 27.08 238,20 250,54 17 0 230 250 190 200 210 220 240 m/z

Figure S56 - A) ESI(-)/MS spectrum of compound 17; B) MS/MS spectrum of *m*/z 241 of compound 17

