Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2016

Appendix

Table A.1: Summary of studies conducted in fluidized beds with ZSM-5 that report aromatic yields.

Study	Feed Type	Fluidization type	Fluidizer gas	Temperature (°C)	Reactor Diameter (cm)	Fluidized Bed Weight (g)	τ _{cat} (s)
This study	Cellulose	Bubbling	Helium	500	4.92	30 - 240	300 - 21,000
Karanjkar (2014) ¹	Cellulose	Bubbling	Helium	500	4.92	30 - 250	15,000 - 72,000
Dayton (2015) ²	Pine	Riser	Nitrogen	500 - 600	5.00	110,000 - 140,000	9,000
Jae (2014) ³	Pine	Bubbling	Nitrogen	600	9.72	500	12,000
Jae (2014) ³	Pine	Bubbling	Recycle	600	9.72	500	12,000
Paasikallio (2014) ⁴	Pine	Circulating	Recycle	520	NA	94,000	16,920
Mullen (2013) ⁵	Switchgrass	Turbulent?	Nitrogen	450 - 500	7.6	615	1,476
Paasikallio (2013) ⁶	Forest Thinnings	Bubbling	Nitrogen	400 - 550	5.00	100	7,200
Lappas (2002) ⁷	Biomass	Riser	Nitrogen	400	0.7	400	4,364

Study	WHSV (h⁻¹)	Feed Rate (g/hr)	Fluidizer flow. (slpm)	u₀ (cm/s)	gas (wt%)	solid (%wt)	total liquid (%wt)	aq. liquid (%wt)	org. liquid (%wt)	max. aromatics (%wt)
This study	0.17 - 12.67	41 - 405	1.00	2.48	46%	7%	-	-	16%	15%
Karanjkar (2014) ¹	0.24 - 0.50	22 - 60	0.48 - 1.28	1.19 - 3.17	41%	6%	-	-	22%	22%
Dayton (2015) ²	0.40	45,000	187	478	7%	50%	28%	18%	10%	2%
Jae (2014) ³	0.30	165 - 345	3.2	2.25	30%	21%	36%	18%	18%	9%
Jae (2014) ³	0.30	165 - 345	3.2	2.25	30%	24%	44%	14%	30%	11%
Paasikallio (2014) ⁴	0.21	20,000	NA	400	21%	27%	51%	19%	32%	2%
Mullen (2013)⁵	2.44	1,500	75	800	26%	21%	51%	22%	29%	3%
Paasikallio (2013) ⁶	0.5	200	3.5	8.4	48%	18%	35%	21%	14%	9%
Lappas (2002) ⁷	0.83	330	30	165 - 150	14%	22%	67%	30%	37%	3%

(Table A.1: Summary of studies conducted in fluidized beds with ZSM-5 that report aromatic yields. Continued)

Figure A.1: Derivative of weight change of temperature programmed oxidation of a mixture of pure cellulose and fresh HZSM-5 catalyst.

References

- 1. P. U. Karanjkar, R. J. Coolman, G. W. Huber, M. T. Blatnik, S. Almalkie, S. M. de Bruyn Kops, T. J. Mountziaris and W. C. Conner, *AlChE J.*, 2014, **60**, 1320-1335.
- 2. D. C. Dayton, J. R. Carpenter, A. Kataria, J. E. Peters, D. Barbee, O. D. Mante and R. Gupta, *Green Chemistry*, 2015, **17**, 4680-4689.
- 3. J. Jae, R. Coolman, T. J. Mountziaris and G. W. Huber, *Chem. Eng. Sci.*, 2014, **108**, 33-46.
- 4. V. Paasikallio, C. Lindfors, E. Kuoppala, Y. Solantausta, A. Oasmaa, J. Lehto and J. Lehtonen, *Green Chemistry*, 2014, **16**, 3549-3559.
- 5. C. A. Mullen and A. A. Boateng, *Industrial & Engineering Chemistry Research*, 2013, **52**, 17156-17161.
- 6. V. Paasikallio, F. Agblevor, A. Oasmaa, J. Lehto and J. Lehtonen, *Energy & Fuels*, 2013, **27**, 7587-7601.
- 7. A. A. Lappas, M. C. Samolada, D. K. Iatridis, S. S. Voutetakis and I. A. Vasalos, *Fuel*, 2002, **81**, 2087-2095.