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1. Imine Reductases

For this study, the IREDs listed in Table S1 were employed. The plasmids encoding these enzymes were used as
published previously (Table S1).

Table S1 Imine reductases used in this study

IRED Protein identifier Organism Reference

IR-3 WP_007131315.1 Bacillales 1

IR-5 WP_023264430.1 Cupriavidus sp. HPC(L) 1

IR-9 WP_009737838.1 Frankia sp. QA3 1

IR-11 WP_013733165.1 Verrucosispora maris 1

IR-13 YP_001108711.1 Saccharopolyspora erythraea 1
NRRL 2338

IR-15 WP_026403156.1 Actinomadura rifamycini 1

IR-17 WP_003931250.1 Mycobacterium vaccae 1

IR-19 WP_024839816.1 Cellulosimicrobium cellulans 1

IR-21 WP_025846174.1 Paenibacillus ehimensis 1

IR-23 WP_004001465.1 Streptomyces viridochromogenes 1

IR-33 WP_005354889.1 Aeromonas veronii 2

IR-Sgf3587 WP_015610874.1 Streptomyces sp. GF3587 35

IR-Sip WP_009330409.1 Streptomyces ipomoeae 91-03 3

IR-Ppu WP_010953707.1 Pseudomonas putida KT2440 3




2. Experimental Section

2.1. Chemicals

Substrates, solvents and product references (compounds 1a-1c, 2a, 2d, 3b, 3d, 4c) were sourced from Sigma Aldrich
(St. Louis, USA), Enamines (Kiev, Ukraine), Alfa Aesar (Ward Hill, USA), Fluorochem Ltd (Hadfield, UK) and Active
Scientific (Prien, Germany).

Table S2: Investigated ketones 1-4, amines a-i and resulted products 1a-4d
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2.2. Analytics

Apparent conversions of substrates 1-4 and a-i to products 1a-4d were determined based on the % peak area of
product and substrate ketones. For rasagiline, a calibration experiment for determining the response factors of the
ketone and amine product was conducted. However, as the response factors differ less than 5 %, the % peak areas
were used directly for calculating the apparent conversions.

Sample preparation: 40 pl of 10 M NaOH was added to 200 pl of the samples. The samples were extracted twice with
120 pl ethyl acetate and the combined organic phases were directly measured in GC (FID) or GC-MS (Gas
chromatographs: GC-2010 Shimadzu, Kyoto, Japan). The columns (25 m x 0.25 mm) BPX-5 (SGE Analytical Science,
Victoria, Australia) and FS-Hydrodex (3-3p (Macheray-Nagel, Diiren, Germany) were used.

The products of the preparative scale experiments were verified by 1H- and 13C-DEPT-NMR (Avance II 300, Bruker
Cooperation, Billerica, USA). Deuterated chloroform was used as solvent. The product identity of 1e, 1f, and 1i were
verified by GC-MS (Figure S1).
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Figure S1: Mass spectra of the fragmented products 1e, 1f and 1i.
Table S3: Summary of the GC analytics for the investigated substrates and products.
Inlet pressure Inlet temperature Retention time
Compound Column Temperature program .
(kPa) (°Q) (min)
75°C hold for 2 min, 2. 85
150°C (10°C/min) hold e
2a BPX-5 . (2 _ /;l;glco 82.7 280
or 2 min, 2a:11.1
(25°C/min)
75°C hold for 5 min,
110°C (5°C/min) hold for 3:15.5
3b BPX-5 5 min, 150°C (10°C/min) 82.7 220
hold for 3 min, 220°C 3a:17.8
(15°C/min)
90°C hold for 5 min,
200°C (20°C/min) hold 4:15.5
4c BPX-5 for 5 min. 260°C 87.8 280
or o i, 4a:14.5
(5°C/min)
60°C hold for 10 min, 1:4.2,1a: 13.5, 1b:
la-1c, le- 220°C (10°C/min) hold 14.9,1c: 12.5,1d:
BPX-5 78.9 300
1i for 5.5 min, 260°C 49, 1e:14.1, 1f:

(5°C/min)

6.7,1i: 15.9




60°C hold for 10 min,

. 2:23.1
100°C (10°C hold
2d BPX-5 (10°C/min) ho 78.9 300
for 10 min, 220°C 2d: 203
(10°C/min) hold for 4 min o
60°C hold for 10 min,
90°C (10°C/min) hold for 3:156
3d BPX-5 . . 78.9 300
10 min, 220°C (10°C/min) 3d 17.8
hold for 4 min U
80°C hold for 10 min,
4d BPX-5 220°C (10°/min) hold for 85.9 300°C 4:22.1
5 min
FS 90°C hold for 5 min,
(5)-2a, 180°C (10°C/min) hold ($)-2a:162
R)-2 Hydrodex for 10 min. 220°C 49 220
(R)-2a B-3p or 2o min, (R)-2a: 16.3

(10°C/min) hold for 2 min

150°C hold for 5 min,
170°C (10°C/min) hold
TPC-3dD BPX-5 for 10 min, 180°C 109.8 300 26.6 and 27.4
(10°C/min) hold for 10
min, 300°C (10°C/min)
hold for 5 min

1 Derivatisation with N-trifluoroacetyl-L-prolyl chloride, please see 2.4.1 for experimental details.

2.3. Substrate Screening

The screenings were performed with purified enzymes for a reaction time of 20 h for the initial and first screening
while the incubation time was extended to 90 h for the second screening. The screenings were performed in 1 mL
scale in 500 mM amine buffer, pH 9.5 (first and second screening: 200 mM), except methylamine was used at a
concentration of 1 M. For the initial screening reactions, 20 mM ketone concentration was applied (20 mM in the first
and second screening), 0.5 mg/mL purified enzyme and a NADPH recycling system consisting of 0.1 mg/mL of glucose
dehydrogenase (Codexis GDH-105), 60 mM D-glucose, and 0.5 mM NADPH. The reaction was stopped with
concentrated sodium hydroxide (end concentration 1.7 M). 240 pl of the solution was extracted twice with 120 pL
ethyl acetate before analysis.

Enantiopure (R)- and (S)-rasagiline standards were used to determine the absolute configuration of the produced
rasagiline.

The results for the screening are shown in Table 1, and a representative GC-chromatogram for each reaction is shown
in Figure S2.
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Figure S2: Representative GC-chromatograms for the substrate screening for product 1la-1c, 1e, 1f, 1i, 2d, 3d
applying IREDs. *The structure of these impurities / side products could not be determined. #The MS-spectrum
suggests that this peak corresponds to the imine. Imines were frequently observed during the reactions if the

substrate ketones were not fully consumed.

Substrate 4 precipitated during time in the aqueous reaction solution (also in the absence of substrate amine), kinetic
1H-NMR measurements were performed in D20 to confirm that sufficient amounts of the substrate ketone is available
within 20 h. The NMR-spectra at different time points (0 h, 5 h, 20 h) are shown in Figure S3a-c.
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Figure S3a: 1H-NMR spectrum for 2-amino-6-0x0-4,5,6,7-tetrahydrobenzothiazole (4) in 75% D20 and 25% DMSO at

time point 0 h.
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Figure S3b: 1H-NMR spectrum for 2-amino-6-0x0-4,5,6,7-tetrahydrobenzothiazole (4) in 75% D20 and 25% DMSO

after 5 h.
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Figure S3c: TH-NMR spectrum for 2-amino-6-0x0-4,5,6,7-tetrahydrobenzothiazole (4) in 75% D20 and 25% DMSO

after 20 h.



After 20 h, the substrate 2-amino-6-0x0-4,5,6,7-tetrahydrobenzothiazole (4) was detected in the tH-NMR spectrum
with a slightly reduced concentration (as judged from signal intensities compared to the DMSO signal) compared to
the first measurement (0 h); no side product was observed. 25 % deuterated DMSO was added for solubility reasons.
The residual water content led to the occurrence of two DMSO signals, no signal for the amino group was visible.
Furthermore the signal for the two protons on position 1 was decreasing during time. This can be explained by a
ketone-enol tautomerization, where the protons at position 1 are exchanged by deuterons from the solvent D20
(Scheme S3d).

H H H D H D DD
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N N N N N

Scheme S3d: Ketone-enol tautomerization of 2-amino-6-o0xo0-4,5,6,7-tetrahydrobenzothiazole (4) in D20.

2.4 Preparative Reactions

2.4.1 Reaction optimization

To optimize the preparative reactions, different reaction conditions were investigated to reach high conversion for
the products: rasagiline (2a), methampethamine (3d) and N-methylpropargyl cyclohexanamine (1b). In small scale
experiments ketone concentrations were varied from 5 mM up to 50 mM, amine concentrations from 50 mM up to
1000 mM, enzyme concentrations between 0.25 mg/mL and 2.5 mg/mL and samples were taken at different time
points from 5 h to 168 h (Figure S4-S7). In order to compare the results, only one parameter was varied. The standard
conditions were set as follows: 10 mM ketone, 200 mM (except for methylamine 1 M) amine buffer (pH 9.5), IRED 1.5
mg/mL, 60 mM glucose, 0.5 mM NADPH, 0.1 mg/mL glucose dehydrogenase (Codexis GDH-105)., reaction time: 90 h
at 30°C.
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(R)-rasagiline 34 41 46 20 7
B (S)-rasagiline 47 55 57 29 5
B 4-fluoro methamphetamine* 84 99 100 100 100
N-methylpropargyl 84 88 90 84 32
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Figure S4: Optimization of the substrate amine concentrations. Conversions after 90 h were measured by GC. *For 4-
fluoro methamphetamine 3d, apparent conversions of >80% are inaccurate due to a higher limit of quantification for

the substrate ketone.
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Figure S5: Optimization of the substrate ketone concentrations. Conversions after 90 h were measured by GC. *For 4-
fluoro methamphetamine 3d, apparent conversions of >80% are inaccurate due to a higher limit of quantification for

the substrate ketone.
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Figure S6: Optimization of the enzyme concentrations. Conversions after 90 h were measured by GC. *For 4-fluoro
methamphetamine 3d, apparent conversions of >80% are inaccurate due to a higher limit of quantification for the
substrate ketone.
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Figure S7: Time course of the reactions. Conversion over time to (R)-rasagiline 2a (IR-14), (5)-rasagiline 2a (IR-Sip),
4-fluoro methamphetamine 3d (IR-Sip), and N-methylpropargyl cyclohexanamine 1b (IR-14) was measured with GC.
*For 4-fluoro methamphetamine 3d, apparent conversions of >80% are inaccurate due to a higher limit of
quantification for the substrate ketone. Conditions: 10 mM ketone, 200 mM (except for methylamine 1 M) amine
buffer (pH 9.5), IRED 1.5 mg/mL, 60 mM glucose, 0.5 mM NADPH, 0.1 mg/mL glucose dehydrogenase (Codexis GDH-
105)., reaction time: 90 h at 30°C.

2.4.1 Reaction Analysis

Under optimized conditions preparative reactions have been performed. The reactions were incubated for 7 days and
the apparent conversions were detected by GC-MS. Enantiomeric excess (%ee) was detected for rasagiline and 4-
fluoro methamphetamine by chiral GC measurement. 4-fluoro methamphetamine was derivatized prior to GC-MS
analysis with N-trifluoroacetyl-L-prolyl chloride (TPC) to the amide TPC-3d according to an established literature
protocol. Briefly, 100 pL of diluted amine (concentration ~ 20 mM) was reacted with 0.2 mL TPC and 4 pL
triethylamine for 15 min at room temperature. 200 pL. 6 M HCl was added and the organic phase was washed two
times with water. The organic phase was dried with MgS04 and injected into the GC-MS. Full conversion was detected
(absence of substrate amine in the chromatogram).6

10
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Figure S8: GC-MS chromatograms for calculation of the apparent conversion for preparative reactions catalyzed by IR-
14 ((R)-2a, 1b) and IR-Sip ((S)-2a, 3d). *The structure of this impurity / side product could not be determined.
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Figure S9: GC chromatograms for the detection of the enantiomeric excess of the preparative scale reactions to
rasagiline and 4-fluoro methamphetamine. To assign the absolute configuration, the GC-samples were spiked with
enantiopure (R)-rasagiline. (A) (R)-rasagiline catalyzed by IR-14 ee: 90%; (B) Same as (A) but spiked with (R)-
rasagiline; (C) (S)-rasagiline catalyzed by IR-Sip ee: 72% (D) Same as (C) but spiked with (R)-rasagiline; (E) 4-fluoro
methamphetamine catalyzed by Rir-Sip ee: 52%.

11



2.4.3 Workup and NMR

The products were isolated including following workup:

The remaining ketone was extracted after addition of concentrated HCI (final pH ~ 2) with 0.5 reaction volumes ethyl
acetate (or DCM) for three times (precipitated enzyme was filtered). Subsequently, the amine product was extracted
after addition of concentrated NaOH (final pH ~ 12) with ethyl acetate or DCM (half reaction volume) for three times.
The organic phases were dried with magnesium sulfate (approx. 0.9 g), filtered, followed by an evaporation step to
remove the remaining substrate amine (propargylamine: 85°C at 10 mbar for 25 min, N-methyl-N-propargylamin:
85°C at 10 mbar for 35 min, methylamine: 42°C at 700 mbar). Finally, 1.2 equivalents (referring to the product amine
at 100 % conversion) of hydrogen chloride solution (2 M) in diethyl ether was added to the redissolved product to
isolate the products as HCl-salts after solvent removed by evaporation.

To verify the products, tH-NMR and 13C-NMR were recorded. The spectra are shown in Figure S10-S13. To investigate
the purity of the isolated products a GC-scan measurement from 60°C to 350°C was performed (Figure S14) and
revealed the followed purities: (R)-rasagiline: >95%, (S)-rasagiline: 91%, 4-fluoro methamphetamine 90%, N-methyl-
N-propargyl cyclohexanamine: >95%.
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Figure S10a: tH-NMR spectrum of the isolated product (R)-rasagiline (2a) in chloroform synthesized by reductive
amination applying IR-14.
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Figure S10b: 13C-NMR spectrum of the isolated product (R)-rasagiline (2a) in chloroform synthesized by reductive
amination applying IR-14.
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Normalized Intensity

™S
A l

i

L L AR L L s A LA AL RAAAE A RN A LAy AL LA RAAAL ALY RS LA AL Ly A

L s AR LA AR LA L) LAs LA LAY SALAE LRS! AL LAY LA LAy SRR AR AR LA LA L0 LA LS AR T
55

T T
70 6 60
Chemical Shift (ppm)

Figure S11b: 13C-NMR spectrum of the isolated product (S)-rasagiline (2a) in chloroform synthesized by reductive
amination applying IR-Sip.
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Figure S12a: 1H-NMR spectrum of the isolated product 4-fluoro methamphetamine (3d) in chloroform synthesized by
reductive amination applying IR-Sip.
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Figure S12b: 13C-NMR spectrum of the isolated product 4-fluoro methamphetamine (3d) in chloroform synthesized by
reductive amination applying IR-Sip.
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Figure S13a: H-NMR spectrum of the isolated product N-methyl-N-propargyl cyclohexanamine (1b) in chloroform
synthesized by reductive amination applying IR-14.
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Figure S13b: 13C-NMR spectrum of the isolated product N-methyl-N-propargyl cyclohexanamine (1b) in chloroform
synthesized by reductive amination applying IR-14.

14



3d : b

Figure S14: GC chromatograms to investigate the purity of the isolated products ((R)-2a, (S)-2a, 3d, 1b) (temperature
gradient from 60°C to 350°C).
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