Supporting Information

Fast, solvent-free and highly enantioselective fluorination of β-keto esters catalyzed by chiral copper complexes in a ball mill

Yifeng Wang, a,† Haojiang Wang, a,† Yidong Jiang, a Cheng Zhang, a Juanjuan Shao a and Danqian Xu a,*

State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
Fax: (+86) 0571 88320066; E-mail: chrc@zjut.edu.cn

Table of Contents

1. General method S2
2. General procedure for the asymmetric fluorination of β-Ketoesters: S2
3. Characterization results S3
4. NMR spectra S23
5. HPLC analysis S68
6. Reference S113
1. General methods

Flash chromatography (FC) was carried out using silica gel (200-300 mesh). Monitoring of reactions was performed by TLC on silica gel precoated on glass plates, and spots were visualized with UV light at 254 nm. 1H and 13C NMR were recorded in CDCl$_3$ on Bruker AVANCE III (500 MHz for 1H NMR and 125 MHz for 13C NMR). TMS served as internal standard ($\delta = 0$ ppm) for 1H NMR and CDCl$_3$ was used as internal standard ($\delta = 77.0$ ppm) for 13C NMR; 1H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. HPLC experiments were carried out using a JASCO LC-2000 Plus system with MD-2010 HPLC diode array detector. Electrospray ionization (ESI) mass experiments were performed on a Thermo LCQ fleet. All experiments were carried out under air. Reactions in the ball mill were conducted using a Fritsch Planetary Micro Mill model “Pulverisette 7”. The milling instrument consists of a main disk which can rotate at a speed of 100-800 rpm and accommodates two grinding bowls (45 mL). Both bowls and balls (2 mm diameter) are made of stainless steel. GC analyses were performed on Supelco β-DEX 120 (30 m) columns; carrier gas: N$_2$; flow rate, 1 ml min$^{-1}$; injector, 200°C; FID detector, air/H$_2$ 400/40 ml min$^{-1}$, 250°C.

Ligands I, substrates 1 and 3 were synthesized according to the reported procedures.$^{[1]}$ Commercially available fluorination reagent (NFSI), ligands I, 7a-e and solvents were used without further purification or drying. All reactions were carried out in oven-dried stainless steel milling vessel. The absolute configurations of 2f$^{[2]}$ and 4j$^{[3]}$ were assigned by comparing the retention times of the HPLC analysis reported in the literature.

2. General procedure for the asymmetric fluorination of β-Ketoesters:

A clean, dry ball milling vessel was charged with 60 stainless steel grinding balls (2 mm diameter), the Lewis acid and the chiral ligands was grinded firstly for 5 minute to form the metal complexes, and then 1,3-dicarbonyl compounds 1a (1 mol) and NFSI (1.2 equiv.) were added sequentially. After 4 min milling at 200 rpm and monitoring by TLC, the mixture was obtained by washing the vessel and the balls
with 3 × 30 mL ethyl acetate. The organic solution was concentrated and purified by Flash chromatography to afford the fluorinated product (gradient: pentane: ethyl acetate=5:1). The enantiomeric excess was determined by chiral-phase HPLC analysis.

3. Characterization results

methyl (R)-2-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2a)

![2a]

White solid; 1H NMR (500 MHz, CDCl₃): δ 7.85 (d, $J = 7.7$ Hz, 1H), 7.72 (t, $J = 8.0$ Hz, 1H), 7.53-7.46 (m, 2H), 3.82 (s, 3H), 3.81 (dd, $J = 11.7, 17.7$ Hz, 1H), 3.45 (dd, $J = 23.3, 17.6$ Hz, 1H); 13C NMR (125 MHz, CDCl₃): δ 195.02 (d, $J_{CF} = 18.2$ Hz), 167.74 (d, $J_{CF} = 27.9$ Hz), 150.80 (d, $J_{CF} = 3.6$ Hz), 136.72, 133.32, 128.67, 126.61, 125.68, 94.64 (d, $J_{CF} = 201.8$ Hz), 53.17, 38.29 (d, $J_{CF} = 24.0$ Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm) tᵣ = 11.2 min (major), tᵣ = 13.3 min (minor). MS (ES$^+$): m/z = 209.15 ([M+H$^+$])

ethyl (R)-2-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2b)

![2b]

Yellow oil; 1H NMR (500 MHz, CDCl₃): δ 7.79 (d, $J = 7.7$ Hz, 1H), 7.68 (t, $J = 7.5$ Hz, 1H), 7.49 (d, $J = 7.7$ Hz, 1H), 7.43 (t, $J = 7.5$ Hz, 1H), 4.24 (q, $J = 7.1$ Hz, 2H), 3.77 (dd, $J = 17.7, 11.6$ Hz, 1H), 3.40 (dd, $J = 23.4, 17.7$ Hz, 1H), 1.22 (t, $J = 7.1$ Hz, 3H). 13C NMR (125 MHz, CDCl₃): δ 195.13 (d, $J_{CF} = 18.1$ Hz), 167.16 (d, $J_{CF} = 27.8$ Hz), 150.80 (d, $J_{CF} = 3.5$ Hz), 136.59, 133.19, 128.50, 126.54, 125.37, 94.42 (d, $J_{CF} = 201.3$ Hz), 62.38, 38.16 (d, $J_{CF} = 23.9$ Hz), 13.85. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm): tᵣ = 9.4 min (major), tᵣ = 10.9 min (minor). MS (ES$^-$): m/z
isopropyl (R)-2-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2c)

White solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.84 (d, $J = 7.7$ Hz, 1H), 7.71 (t, $J = 8.0$ Hz, 1H), 7.51 (d, $J = 7.7$ Hz, 1H), 7.47 (t, $J = 7.5$ Hz, 1H), 5.13-5.18 (m, 1H), 3.77 (dd, $J = 17.6$, 11.8 Hz, 1H), 3.43 (dd, $J = 23.3$, 17.6 Hz, 1H), 1.25 (dd, $J = 12.0$, 6.3 Hz, 6H).

13C NMR (125 MHz, CDCl$_3$): δ 195.29 (d, $J_{CF} = 18.4$ Hz), 166.88 (d, $J_{CF} = 27.4$ Hz), 150.92 (d, $J_{CF} = 3.5$ Hz), 136.55, 133.47, 128.56, 126.55, 125.57, 94.47 (d, $J_{CF} = 201.7$ Hz), 70.66, 38.30 (d, $J_{CF} = 24.0$ Hz), 21.51 (d, $J_{CF} = 13.3$ Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak AD-H, Hexane: iPrOH= 99: 1, flow rate 0.5ml/min, 254nm): $t_R = 34.8$ min (minor), $t_R = 43.7$ min (major). MS (ES$^+$): m/z =237.85 ([M+H]$^+$)

cyclohexyl (R)-2-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2d)

White solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.83 (d, $J = 7.7$ Hz, 1H), 7.70 (t, $J = 8.0$ Hz, 1H), 7.51 (d, $J = 7.7$ Hz, 1H), 7.46 (t, $J = 7.5$ Hz, 1H), 4.94-4.89 (m, 1H), 3.76 (dd, $J = 17.5$, 10.9 Hz, 1H), 3.43 (dd, $J = 22.9$, 17.5 Hz, 1H), 1.76 (dd, $J = 10.9$, 7.9 Hz, 2H), 1.53 (dd, $J = 14.0$, 9.1 Hz, 2H), 1.47-1.38 (m, 3H), 1.36-1.28 (m, 2H), 1.24-1.18 (m, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 195.33 (d, $J_{CF} = 18.3$ Hz), 166.60 (d, $J_{CF} = 27.8$ Hz), 150.79 (d, $J_{CF} = 3.8$ Hz), 136.49, 133.51, 128.51, 126.50, 125.42, 94.55 (d, $J_{CF} = 201.7$ Hz), 74.94, 38.34 (d, $J_{CF} = 24.0$ Hz), 31.00 (d, $J_{CF} = 15.5$ Hz), 25.09, 23.08 (d, $J_{CF} = 6.0$ Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 98: 2, flow rate 1.0ml/min, 254nm): $t_R = 15.6$ min (major), $t_R = 17.4$ min (minor). MS (ES$^+$): m/z =277.15 ([M+H]$^+$)
benzyl \((R)\)-2-fluoro-1-oxo-2,3-dihydro-1\(H\)-indene-2-carboxylate \((2e)\)

![2e](image)

White solid; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 8.04 (d, \(J = 7.4\) Hz, 1H), 7.86 (d, \(J = 7.7\) Hz, 1H), 7.72 (d, \(J = 7.7\) Hz, 1H), 7.62 (t, \(J = 8.0\) Hz, 1H), 7.51-7.48 (m, 2H), 7.34 (d, \(J = 6.9\) Hz, 3H), 5.27 (dd, \(J = 30.5\) Hz, 12 Hz 2H), 3.79 (dd, \(J = 17.6, 11.5\) Hz, 1H), 3.49-3.41 (m, 1H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 194.96 (d, \(J_{CF} = 17.5\) Hz), 167.17 (d, \(J_{CF} = 28.0\) Hz), 150.78 (d, \(J_{CF} = 3.8\) Hz), 136.67, 135.80, 134.77, 133.41, 128.67, 128.46, 128.02, 126.59, 125.70, 94.66 (d, \(J_{CF} = 202.4\) Hz), 67.85, 38.29 (d, \(J_{CF} = 23.8\) Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: \(i\)PrOH= 90: 10, flow rate 1.0ml/min, 254nm): \(t_R = 18.3\) min (major), \(t_R = 24.1\) min (minor). MS (ES\(^+\)): \(m/z = 285.37\) ([M+H]\(^+\))

tert-butyl \((R)\)-2-fluoro-1-oxo-2,3-dihydro-1\(H\)-indene-2-carboxylate \((2f)\)

![2f](image)

White solid; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.83 (d, \(J = 7.7\) Hz, 1H), 7.69 (t, \(J = 7.5\) Hz, 1H), 7.50 (d, \(J = 7.7\) Hz, 1H), 7.46 (t, \(J = 7.5\) Hz, 1H), 3.74 (dd, \(J = 17.5, 10.8\) Hz, 1H), 3.41 (dd, \(J = 22.9, 17.5\) Hz, 1H), 1.44 (s, 9H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)): \(\delta\) 195.70 (d, \(J_{CF} = 18.4\) Hz), 166.26 (d, \(J_{CF} = 27.6\) Hz), 150.94 (d, \(J_{CF} = 3.7\) Hz), 136.39, 133.68, 128.46, 126.47, 125.43, 94.41 (d, \(J_{CF} = 201.9\) Hz), 84.08, 38.37 (d, \(J_{CF} = 24.1\) Hz), 27.85. The enantiomeric excess was determined by HPLC (Daicel Chiralpak AD-H, Hexane: \(i\)PrOH= 99: 1, flow rate 0.5ml/min, 254nm): \(t_R = 29.0\) min (minor), \(t_R = 40.6\) min (major). MS (ES\(^+\)): \(m/z = 272.95\) ([M+Na]\(^+\))

\((3r)\)-adamantan-1-yl \((R)\)-2-fluoro-1-oxo-2,3-dihydro-1\(H\)-indene-2-carboxylate \((2g)\)
White solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.83 (d, $J = 7.7$ Hz, 1H), 7.69 (t, $J = 7.5$ Hz, 1H), 7.50 (d, $J = 7.7$ Hz, 1H), 7.46 (t, $J = 7.5$ Hz, 1H), 3.74 (dd, $J = 17.5$, 10.5 Hz, 1H), 3.40 (dd, $J = 22.8$, 17.5 Hz, 1H), 2.15 (s, 3H), 2.05 (d, $J = 2.9$ Hz, 6H), 1.63 (t, $J = 2.7$ Hz, 6H). 13C NMR (125 MHz, CDCl$_3$): δ 195.75 (d, $J_{CF} = 18.4$ Hz), 165.82 (d, $J_{CF} = 27.8$ Hz), 150.95 (d, $J_{CF} = 3.9$ Hz), 136.32, 133.75, 128.41, 126.44, 125.39, 94.34 (d, $J_{CF} = 201.9$ Hz), 84.10, 41.12, 38.47 (d, $J_{CF} = 24.2$ Hz), 35.95, 30.93. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm): t$_R$ = 7.6 min (major), t$_R$ = 10.5 min (minor). MS (ES$^+$): m/z =329.17 ([M+H]$^+$)

methyl (R)-2,5-difluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2h)

White solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.81-7.75 (m, 1H), 7.61 (t, $J = 8.0$ Hz, 1H), 7.18 (dd, $J = 13.2$, 5.3 Hz, 1H), 3.83 (s, 3H), 3.81 (dd, $J = 17.8$, 10.9 Hz, 1H), 3.44 (dd, $J = 22.9$, 17.9 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 193.08 (d, $J_{CF} = 18.3$ Hz), 169.23, 167.53, 167.23 (d, $J_{CF} = 17.9$ Hz), 153.79 (dd, $J_{CF} = 10.6$, 3.8 Hz), 128.18 (d, $J_{CF} = 10.7$ Hz), 117.17 (d, $J_{CF} = 23.9$ Hz), 113.54 (d, $J_{CF} = 23.0$ Hz), 94.61 (d, $J_{CF} = 202.6$ Hz), 53.26, 38.11 (dd, $J_{CF} = 24.3$, 1.9 Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm): t$_R$ = 14.9 min (major), t$_R$ = 18.3 min (minor). MS (ES$^+$): m/z =227.04 ([M+H]$^+$)

methyl (R)-5-chloro-2-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2i)
White solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.78 (d, $J = 8.2$ Hz, 1H), 7.52 (s, 1H), 7.47-7.45 (m, 1H), 3.83 (s, 3H), 3.79 (dd, $J = 17.9$, 11.1 Hz, 1H), 3.43 (dd, $J = 22.9$, 17.8 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 193.58 (d, $J_{CF} = 18.4$ Hz), 167.36 (d, $J_{CF} = 27.7$ Hz), 152.13 (d, $J_{CF} = 3.8$ Hz), 143.52, 131.73, 129.60, 126.90, 126.72, 94.53 (d, $J_{CF} = 202.9$ Hz), 53.30, 37.98 (d, $J_{CF} = 24.3$ Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 99:1, flow rate 1.0ml/min, 254nm): $t_R =$ 35.2 min (major), $t_R =$ 49.9 min (minor). MS (ES$^+$): m/z = 243.75 ([M+H$^+$]).

methyl (R)-5-bromo-2-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2j)

Yellow solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.69 (m, 2H), 7.62 (dd, $J = 8.2$, 0.7 Hz, 1H), 3.82 (s, 3H), 3.78 (dd, $J = 10.5$, 17.5 Hz 1H), 3.43 (dd, $J = 22.9$, 17.7 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 193.82 (d, $J_{CF} = 18.3$ Hz), 167.28 (d, $J_{CF} = 27.8$ Hz), 152.15 (d, $J_{CF} = 3.7$ Hz), 132.42, 132.38, 132.08, 129.97, 126.68, 94.41 (d, $J_{CF} = 202.9$ Hz), 53.28, 37.86 (d, $J_{CF} = 24.2$ Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90:10, flow rate 1.0ml/min, 254nm): $t_R =$ 36.9 min (major), $t_R =$ 50.9 min (minor). MS (ES$^+$): m/z = 287.45 ([M+H$^+$]).

methyl (R)-4-bromo-2-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2k)

Yellow solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.88 (d, $J = 7.8$ Hz, 1H), 7.81 (d, $J = 7.6$ Hz, 1H), 7.47-7.45 (m, 1H), 3.83 (s, 3H), 3.79 (dd, $J = 17.9$, 11.1 Hz, 1H), 3.43 (dd, $J = 22.9$, 17.8 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 193.82 (d, $J_{CF} = 18.3$ Hz), 167.28 (d, $J_{CF} = 27.8$ Hz), 152.15 (d, $J_{CF} = 3.7$ Hz), 132.42, 132.38, 132.08, 129.97, 126.68, 94.41 (d, $J_{CF} = 202.9$ Hz), 53.28, 37.86 (d, $J_{CF} = 24.2$ Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90:10, flow rate 1.0ml/min, 254nm): $t_R =$ 36.9 min (major), $t_R =$ 50.9 min (minor). MS (ES$^+$): m/z = 287.45 ([M+H$^+$]).
Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 3.84 (s, 3H), 3.75 (dd, J = 18.1, 11.6 Hz, 1H), 3.38 (dd, J = 23.2, 18.2 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$) δ 194.48 (d, J$_{CF}$ = 18.5 Hz), 167.27 (d, J$_{CF}$ = 27.8 Hz), 150.65 (d, J$_{CF}$ = 3.7 Hz), 139.39, 135.15, 130.37, 124.39, 121.86, 94.07 (d, J$_{CF}$ = 202.7 Hz), 53.38, 39.32 (d, J$_{CF}$ = 24.8 Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH = 90: 10, flow rate 1.0ml/min, 254nm): t_R = 17.0 min (major), t_R = 20.1 min (minor). MS (ES$^+$): m/z = 287.49 ([M+H$^+$]).

methyl (R)-6-bromo-2-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2l)

![Image](image)

Yellow solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.87 (d, J = 7.8 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.39 (t, J = 7.7 Hz, 1H), 3.83 (s, 3H), 3.74 (dd, J = 18.1, 11.6 Hz, 1H), 3.37 (dd, J = 23.2, 18.2 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 194.39 (d, J$_{CF}$ = 18.3 Hz), 167.24 (d, J$_{CF}$ = 27.8 Hz), 150.60 (d, J$_{CF}$ = 3.8 Hz), 139.34, 135.19, 130.35, 124.34, 121.85, 94.07 (d, J$_{CF}$ = 202.7 Hz), 53.29, 39.32 (d, J$_{CF}$ = 24.8 Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH = 90: 10, flow rate 1.0ml/min, 254nm): t_R = 11.9 min (major), t_R = 14.5 min (minor). MS (ES$^+$): m/z = 287.46 ([M+H$^+$]).

methyl (R)-2-fluoro-6-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2m)

![Image](image)

Yellow solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.61 (s, 1H), 7.52 (dd, J = 7.9, 1.1 Hz, 1H), 7.39 (d, J = 7.9 Hz, 1H), 3.79 (s, 3H), 3.74 (dd, J = 17.5, 11.1 Hz, 1H), 3.37 (dd, J = 23.3, 17.5 Hz, 1H), 2.41 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 195.03 (d, J$_{CF}$ = 18.2 Hz), 167.75 (d, J$_{CF}$ = 28.0 Hz), 148.19 (d, J$_{CF}$ = 3.7 Hz), 138.80, 137.98, 133.36, 126.24, 125.36, 94.94 (d, J$_{CF}$ = 201.4 Hz), 53.02, 37.89 (d, J$_{CF}$ = 23.8 Hz), 20.95. The
enantiomeric excess was determined by HPLC (Daicel Chiralpak AD-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm): t_R = 9.3 min (major), t_R = 10.7 min (minor). MS (ES^+): m/z =223.20 ([M+H]^+)

methyl (R)-2-fluoro-5,6-dimethoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2n)

White solid; ^1H NMR (500 MHz, CDCl3): 6 7.18 (s, 1H), 6.89 (s, 1H), 3.98 (s, 3H), 3.79 (s, 3H), 3.69 (dd, J = 17.4, 10.4 Hz, 1H), 3.32 (dd, J = 22.5, 17.4 Hz, 1H). ^13C NMR (125 MHz, CDCl3): 6 193.25 (d, J_{CF} = 18.5 Hz), 167.97 (d, J_{CF} = 28.1 Hz), 157.27, 150.39, 146.79 (d, J_{CF} = 4.1 Hz), 125.95, 107.36, 105.49, 95.05 (d, J_{CF} = 201.2 Hz), 56.41, 56.13, 53.04, 37.92 (d, J_{CF} = 24.1 Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm): t_R = 44.7 min (major), t_R = 59.6 min (minor). MS (ES^+): m/z =269.21 ([M+H]^+)

methyl (R)-2-fluoro-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2o)

Yellow solid. ^1H NMR (500 MHz, CDCl3) 6 7.75 (d, J = 8.6 Hz, 1H), 6.97 (dd, J = 8.6, 2.2 Hz, 1H), 6.92 (s, 1H), 3.91 (s, 3H), 3.80 (s, 3H), 3.74 (dd, J = 17.6, 11.1 Hz, 1H), 3.36 (dd, J = 23.1, 17.7 Hz, 1H). ^13C NMR (125 MHz, CDCl3) 6 192.82 (d, J = 18.3 Hz), 168.03, 166.92, 153.94 (d, J = 3.8 Hz), 127.41, 126.30, 116.73, 109.81, 95.04 (d, J = 201.1 Hz), 55.87, 53.05, 38.21 (d, J = 24.1 Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm): t_R = 21.3 min (major), t_R = 24.9 min (minor). MS (ES^+): m/z =239.08 ([M+H]^+)
methyl (R)-2-fluoro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (2p)

White solid; ¹H NMR (500 MHz, CDCl₃): δ 8.06 (d, J = 7.9 Hz, 1H), 7.56-7.53 (m, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 7.9 Hz, 1H), 3.82 (s, 3H), 3.22-3.14 (m, 1H), 3.10-3.04 (m, 1H), 2.77-2.67 (m, 1H), 2.58-2.49 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 188.40 (d, JₐCF = 18.7 Hz), 167.76 (d, JₐCF = 26.1 Hz), 143.12, 134.55, 130.46, 128.74, 128.38, 127.22, 93.25 (d, JₐCF = 194.0 Hz), 52.90, 31.84 (d, JₐCF = 22.2 Hz), 24.77 (d, JₐCF = 7.3 Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm): tᵣ = 12.4 min (major), tᵣ = 13.7 min (minor). MS (ES⁺): m/z =223.25 ([M+H]+)

methyl (R)-6-fluoro-5-oxo-6,7,8,9-tetrahydro-5H-benzo[7]annulene-6-carboxylate (2q)

Yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.54 (dd, J = 7.7, 1.2 Hz, 1H), 7.43 (td, J = 7.5, 1.3 Hz, 1H), 7.30 (dd, J = 14.3, 7.0 Hz, 1H), 7.21 (d, J = 7.6 Hz, 1H), 3.82 (s, 3H), 3.14-3.07 (m, 1H), 2.96-2.90 (m, 1H), 2.68-2.56 (m, 1H), 2.33-2.24 (m, 1H), 2.18-2.10 (m, 1H), 1.95-1.87 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 198.59 (d, JₐCF = 26.7 Hz), 167.60 (d, JₐCF = 25.2 Hz), 140.60, 136.44, 132.26, 129.54, 129.26, 126.62, 99.10 (d, JₐCF = 195.9 Hz), 52.93, 33.40 (d, JₐCF = 1.3 Hz), 32.66 (d, JₐCF = 21.25 Hz), 22.38 (d, JₐCF = 2.1 Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak IC-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm): tᵣ = 12.2 min (minor), tᵣ = 13.6 min (major). MS (ES⁺): m/z =237.15 ([M+H]+)

(3r)-adamantan-1-yl (R)-2-fluoro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate
White solid; 1H NMR (500 MHz, CDCl$_3$): δ 8.06 (d, $J = 7.9$ Hz, 1H), 7.53 (t, $J = 7.5$ Hz, 1H), 7.35 (t, $J = 7.6$ Hz, 1H), 7.27 (d, $J = 7.6$ Hz, 1H), 3.19-3.04 (m, 2H), 2.72-2.63 (m, 1H), 2.53-2.43 (m, 1H), 2.13 (s, 3H), 2.04 (d, $J = 2.8$ Hz, 6H), 1.61 (s, 6H). 13C NMR (125 MHz, CDCl$_3$): δ 189.25 (d, $J_{CF} = 18.4$ Hz), 165.72 (d, $J_{CF} = 26.4$ Hz), 142.84, 134.14, 131.14, 128.59, 128.03 (d, $J_{CF} = 0.8$ Hz), 127.04, 93.03 (d, $J_{CF} = 194.0$ Hz), 83.96, 41.02, 35.86, 31.97 (d, $J_{CF} = 22.3$ Hz), 30.81, 25.29 (d, $J_{CF} = 8.1$ Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm): t_R = 7.8 min (major), t_R = 13.1 min (minor). MS (ES$^+$): $m/z = 343.20$ ([M+H$^+$])

(3r)-adamantan-1-yl

(R)-6-fluoro-5-oxo-6,7,8,9-tetrahydro-5H-benzo[7]annulene-6-carboxylate (2s)

White solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.53 (dd, $J = 7.6, 1.2$ Hz, 1H), 7.43 (td, $J = 7.5, 1.3$ Hz, 1H), 7.32 (t, $J = 7.2$ Hz, 1H), 7.20 (d, $J = 7.6$ Hz, 1H), 3.09-3.03 (m, 1H), 2.96-2.91 (m, 1H), 2.69-2.47 (m, 2H), 2.23 (d, $J = 3.9$ Hz, 2H), 2.16 (s, 3H), 2.06 (dd, $J = 5.0, 3.1$ Hz, 6H), 1.65 (t, $J = 2.7$ Hz, 6H). 13C NMR (125 MHz, CDCl$_3$): δ 199.21 (d, $J_{CF} = 24.1$ Hz), 165.64 (d, $J_{CF} = 25.1$ Hz), 140.06, 137.30, 132.04, 129.46, 129.21, 126.61, 98.32 (d, $J_{CF} = 195.0$ Hz), 83.67, 41.02, 36.03, 33.29, 32.62 (d, $J_{CF} = 22.4$ Hz), 30.92, 22.29 (d, $J_{CF} = 3.9$ Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak IC-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm): t_R = 11.9 min (minor), t_R = 14.3 min (major). MS (ES$^+$): $m/z = 357.25$ ([M+H$^+$])
(R)-2-fluoro-1-oxo-N-phenyl-2,3-dihydro-1H-indene-2-carboxamide (2t)

White solid; 1H NMR (500 MHz, CDCl$_3$) δ 8.31 (s, 1H), 7.84 (d, $J = 7.7$ Hz, 1H), 7.72 (t, $J = 7.5$ Hz, 1H), 7.59 (d, $J = 7.9$ Hz, 2H), 7.55 (d, $J = 7.7$ Hz, 1H), 7.47 (t, $J = 7.5$ Hz, 1H), 7.36 (t, $J = 7.9$ Hz, 2H), 7.18 (t, $J = 7.4$ Hz, 1H), 4.08 (dd, $J = 17.4, 11.3$ Hz, 1H), 3.42 (dd, $J = 24.0, 17.4$ Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ 196.30 (d, $J_{CF} = 18.1$ Hz), 164.75 (d, $J_{CF} = 21.8$ Hz), 151.83 (d, $J_{CF} = 4.0$ Hz), 136.84, 136.63, 133.25, 129.11, 128.54, 126.56, 125.58, 125.22, 120.13, 97.03 (d, $J_{CF} = 204.7$ Hz), 37.39 (d, $J_{CF} = 22.6$ Hz). The enantiomeric excess was determined by HPLC (Daicel Chiralpak IC-H, Hexane: iPrOH= 90: 10, flow rate 1.0ml/min, 254nm): $t_R = 17.3$ min (major), $t_R = 25.0$ min (minor). MS (ES$^+$): m/z = 270.16 ([M+H$^+$])

methyl (R)-2-fluoro-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5a)

Yellow oil; 1H NMR (500 MHz, CDCl$_3$): δ 7.77-7.72 (m, 2H), 7.30-7.20 (m, 2H), 3.89 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 189.63 (d, $J_{CF} = 18.1$ Hz), 171.14 (d, $J_{CF} = 1.2$ Hz), 162.64 (d, $J_{CF} = 36.7$ Hz), 139.70, 125.88, 124.47, 117.46, 113.61, 103.36 (d, $J_{CF} = 249.3$ Hz), 53.81. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, column at Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm): $t_R = 18.3$ min (minor), $t_R = 20.7$ min (major). MS (ES$^+$): m/z = 211.15 ([M+H$^+$])

ethyl (R)-2-fluoro-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5b)
Yellow oil; 1H NMR (500 MHz, CDCl$_3$): δ 7.76-7.72 (m, 2H), 7.28-7.21 (m, 2H), 4.35 (dd, $J = 7.1$, 3.9 Hz, 2H), 1.31 (t, $J = 7.1$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 189.83 (d, $J_{CF} = 18.2$ Hz), 171.20 (d, $J_{CF} = 1.3$ Hz), 162.22 (d, $J_{CF} = 36.4$ Hz), 139.66, 125.83, 124.40, 117.46, 113.58, 103.28 (d, $J_{CF} = 249.5$ Hz), 63.51, 13.87. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm): $t_R =15.6$ min (minor), $t_R =18.8$ min (major). MS (ES$^+$): $m/z =225.05$ ([M+H$^+$])

isopropyl (R)-2-fluoro-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5c)

Yellow oil; 1H NMR (500 MHz, CDCl$_3$): δ 7.77-7.72 (m, 2H), 7.28-7.22 (m, 2H), 5.24-5.16 (m, 1H), 1.30 (t, $J = 5.9$ Hz, 6H). 13C NMR (125 MHz, CDCl$_3$): δ 189.98 (d, $J_{CF} = 18.4$ Hz), 171.27 (d, $J_{CF} = 1.4$ Hz), 161.80 (d, $J_{CF} = 35.9$ Hz), 139.57, 125.83, 124.33, 117.54, 113.58, 103.24 (d, $J_{CF} = 249.9$ Hz), 72.03, 21.45. The enantiomeric excess was determined by HPLC (Daicel Chiralpak IC-H, Hexane: iPrOH= 95:5, flow rate 1.0 mL/min, 254nm): $t_R =8.7$ (minor), $t_R = 9.1$ min (major). MS (ES$^+$): $m/z =239.08$ ([M+H$^+$])

tert-butyl (R)-2-fluoro-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5d)

Yellow oil; 1H NMR (500 MHz, CDCl$_3$): δ 7.74-7.70 (m, 2H), 7.25-7.19 (m, 2H), 1.49 (s, 9H). 13C NMR (125 MHz, CDCl$_3$): δ 190.32 (d, $J_{CF} = 18.4$ Hz), 171.27 (d, $J_{CF} = 1.6$ Hz), 161.08 (d, $J_{CF} = 35.9$ Hz), 139.42, 125.66, 124.18, 117.64, 113.48, 103.19 (d, $J_{CF} = 250.4$ Hz), 85.60, 27.70. The enantiomeric excess was determined by HPLC (Daicel Chiralpak IC-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm): $t_R =5.6$ min (minor), $t_R =5.9$ min (major). MS (ES$^+$): $m/z =253.15$ ([M+H$^+$])
benzyl (R)-2-fluoro-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5e)

![5e](image)

Yellow oil; 1H NMR (500 MHz, CDCl$_3$): δ 7.76-7.71 (m, 2H), 7.39-7.35 (m, 3H), 7.34-7.31 (m, 2H), 7.28-7.21 (m, 2H), 5.33 (d, $J = 3.0$ Hz, 2H). 13C NMR (125 MHz, CDCl$_3$): δ 189.65 (d, $J_{CF} = 18.3$ Hz), 171.19 (d, $J_{CF} = 1.5$ Hz), 162.18 (d, $J_{CF} = 36.6$ Hz), 139.69, 134.07, 128.76, 128.68, 128.16, 125.91, 124.46, 117.47, 113.60, 103.35 (d, $J_{CF} = 250.1$ Hz), 68.70. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 99:1, flow rate 1.0 mL/min, 254nm): $t_R = 12.0$ min (major), $t_R = 13.3$ min (minor). MS (ES$^+$): m/z =287.07 ([M+H]$^+$)

methyl (R)-2-fluoro-5-methyl-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5f)

![5f](image)

Yellow oil; 1H NMR (500 MHz, CDCl$_3$): δ 7.54 (dd, $J = 8.5$, 1.9 Hz, 1H), 7.50 (s, 1H), 7.10 (d, $J = 8.4$ Hz, 1H), 3.86 (s, 3H), 2.38 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 189.68 (d, $J_{CF} = 18.2$ Hz), 169.56 (d, $J_{CF} = 1.2$ Hz), 162.72 (d, $J_{CF} = 37.3$ Hz), 140.80, 134.45, 125.23, 117.29, 113.12, 103.66 (d, $J_{CF} = 248.5$ Hz), 53.69, 20.52. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm): $t_R = 15.3$ min (minor), $t_R = 19.7$ min (major). MS (ES$^+$): m/z =225.17 ([M+H]$^+$)

methyl (R)-2-fluoro-6-methyl-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5g)
Yellow oil; 1H NMR (500 MHz, CDCl₃): δ 7.62 (d, J = 7.9 Hz, 1H), 7.07 (d, J = 7.9 Hz, 1H), 7.02 (s, 1H), 3.88 (s, 3H), 2.49 (s, 3H). 13C NMR (125 MHz, CDCl₃): δ 188.90 (d, J_{CF} = 18.4 Hz), 171.66 (d, J_{CF} = 1.4 Hz), 162.79 (d, J_{CF} = 37.0 Hz), 152.53, 125.84, 125.49, 115.09, 113.74, 103.83 (d, J_{CF} = 249.0 Hz), 53.75, 22.78. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH = 90:10, flow rate 1.0 mL/min, 254 nm): t_R = 17.1 min (minor), t_R = 24.3 min (major). MS (ES$^+$): m/z = 225.15 ([M+H]+)

methyl (R)-2-fluoro-7-methyl-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5h)

Yellow oil; 1H NMR (500 MHz, CDCl₃): δ 7.55 (m, 2H), 7.15 (t, J = 7.5 Hz, 1H), 3.89 (s, 3H), 2.36 (s, 3H). 13C NMR (125 MHz, CDCl₃): δ 190.18 (d, J_{CF} = 18.1 Hz), 169.85 (d, J_{CF} = 1.6 Hz), 162.86 (d, J_{CF} = 37.0 Hz), 140.58, 124.28, 123.91, 123.04, 116.94, 103.36 (d, J = 248.6 Hz), 53.76, 13.99. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH = 95:5, flow rate 1.0 mL/min, 254 nm): t_R = 11.5 min (major), t_R = 12.0 min (minor). MS (ES$^+$): m/z = 225.16 ([M+H]+)

methyl (R)-2-fluoro-5-fluoro-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5i)

Yellow solid; 1H NMR (500 MHz, CDCl₃): δ 7.50-7.45 (m, 1H), 7.39 (dd, J = 6.3, 2.8 Hz, 1H), 7.22 (dd, J = 9.0, 3.5 Hz, 1H), 3.89 (s, 3H). 13C NMR (125 MHz, CDCl₃): δ 189.15 (dd, J_{CF} = 18.4, 3.0 Hz), 167.20, 162.27 (d, J_{CF} = 36.7 Hz), 158.99 (d, J_{CF} =
245 Hz), 127.16 (d, $J_{CF} = 25.7$ Hz), 118.18 (d, $J_{CF} = 8.3$ Hz), 114.92 (d, $J_{CF} = 7.8$ Hz), 111.25 (d, $J_{CF} = 24.8$ Hz), 104.07 (d, $J_{CF} = 250.3$ Hz), 53.92. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 99:1, flow rate 1.0 mL/min, 254nm): $t_R = 36.5$ min (major). MS (ES$^+$): m/z = 251.03 ([M+Na$^+$])

methyl (R)-2-fluoro-5-chloro-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5j)

Yellow solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.70-7.67 (m, 2H), 7.20 (d, $J = 9.5$ Hz, 1H), 3.89 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 188.49 (d, $J_{CF} = 18.4$ Hz), 169.38 (d, $J_{CF} = 1.4$ Hz), 162.14 (d, $J_{CF} = 36.6$ Hz), 139.44, 130.14, 125.18, 118.63, 114.95, 103.74 (d, $J_{CF} = 250.9$ Hz), 53.93. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm): $t_R = 7.6$ min (major), $t_R = 8.9$ min (minor). MS (ES$^+$): m/z = 245.04 ([M+H$^+$])

methyl (R)-2-fluoro-5-bromo-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5k)

Yellow solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.86 (d, $J = 2.0$ Hz, 1H), 7.83 (dd, $J = 8.7$, 2.2 Hz, 1H), 7.15 (d, $J = 8.7$ Hz, 1H), 3.90 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 188.31 (d, $J_{CF} = 18.1$ Hz), 169.85 (d, $J_{CF} = 1.2$ Hz), 162.14 (d, $J_{CF} = 36.6$ Hz), 142.18, 128.34, 119.17, 117.12, 115.35, 103.58 (d, $J_{CF} = 251.2$ Hz), 53.97. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OD-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm): $t_R = 17.6$ min (major), $t_R = 19.3$ min (minor). MS (ES$^+$): m/z = 288.95 ([M+H$^+$])

methyl (R)-2-fluoro-5-iodo-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5l)
Yellow solid; 1H NMR (500 MHz, CDCl$_3$): δ 8.05 (d, J = 1.8 Hz, 1H), 8.00 (dd, J = 8.7, 1.9 Hz, 1H), 7.05 (d, J = 8.6 Hz, 1H), 3.89 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 188.02 (d, J_{CF} = 18.3 Hz), 170.56 (d, J_{CF} = 1.1 Hz), 162.14 (d, J_{CF} = 36.5 Hz), 147.83, 134.42, 119.71, 115.75, 103.24 (d, J_{CF} = 251.0 Hz), 86.71, 53.96. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm): t_R =21.3 min (major), t_R = 27.1 min (minor). MS (ES$^+$): m/z =336.93 ([M+H]$^+$)

methyl (R)-2-fluoro-6-iodo-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5m)

Yellow solid; 1H NMR (500 MHz, CDCl$_3$): δ 7.67 (d, J = 1.1 Hz, 1H), 7.63 (dd, J = 8.0, 1.2 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 3.88 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 188.64 (d, J_{CF} = 18.2 Hz), 170.50 (d, J_{CF} = 1.1 Hz), 162.12 (d, J_{CF} = 36.7 Hz), 134.18, 126.27, 123.22, 116.95, 107.82, 103.34 (d, J_{CF} = 251.1 Hz), 53.91. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm): t_R =17.2 min (minor), t_R = 28.8 min (major). MS (ES$^+$): m/z =337.03 ([M+H]$^+$)

methyl (R)-2-fluoro-5-methoxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5n)

Yellow oil; 1H NMR (500 MHz, CDCl$_3$): δ 7.31 (dd, J = 9.0, 2.8 Hz, 1H), 7.13 (d, J = 9.0 Hz, 1H), 7.10 (d, J = 2.8 Hz, 1H), 3.87 (s, 3H), 3.81 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 189.87 (d, J_{CF} = 18.1 Hz), 166.28 (d, J_{CF} = 1.7 Hz), 162.65 (d, J_{CF} = 37.4 Hz)
Hz), 156.57, 128.92, 117.51, 114.39, 105.94, 104.06 (d, $J_{CF} = 248.5$ Hz), 55.98, 53.72.

The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm): $t_R = 27.4$ min (minor), $t_R = 30.7$ min (major). MS (ES$^+$): m/z = 263.04 ([M+Na$^+$])

methyl (R)-2-fluoro-6-methoxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5o)

Yellow oil; 1H NMR (500 MHz, CDCl$_3$): δ 7.64 (d, $J = 8.7$ Hz, 1H), 6.77 (dd, $J = 8.6$, 2.1 Hz, 1H), 6.65 (d, $J = 2.1$ Hz, 1H), 3.94 (s, 3H), 3.89 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 187.07 (d, $J_{CF} = 18.0$ Hz), 173.82, 169.60, 162.84 (d, $J_{CF} = 36.9$ Hz), 127.07, 113.34, 110.34, 104.46 (d, $J_{CF} = 249.6$ Hz), 97.21, 56.31, 53.76. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm): $t_R = 28.9$ min (minor), $t_R = 41.3$ min (major). MS (ES$^+$): m/z =263.05 ([M+Na$^+$])

methyl (R)-2-fluoro-7-methoxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (5p)

Yellow oil; 1H NMR (500 MHz, CDCl$_3$): δ 7.30 (dd, $J = 7.6$, 1.2 Hz, 1H), 7.26 (dd, $J = 8.0$, 1.2 Hz, 1H), 7.18 (t, $J = 7.8$ Hz, 1H), 3.98 (s, 3H), 3.87 (s, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 189.81 (d, $J_{CF} = 18.0$ Hz), 162.43 (d, $J_{CF} = 36.9$ Hz), 160.79 (d, $J_{CF} = 1.7$ Hz), 146.16, 125.09, 121.24, 118.57, 116.59, 103.36 (d, $J_{CF} = 250.2$ Hz), 56.50, 53.78. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm): $t_R = 46.3$ min (minor), $t_R = 60.4$ min (major). MS (ES$^+$): m/z =263.08 ([M+Na$^+$])

s18
methyl \((R)-2\text{-fluoro-1-oxo-1,2-dihydrornaphtho}[2,1-b]\text{furan-2-carboxylate (5q)}\)

\[
\begin{align*}
\text{5q}
\end{align*}
\]

Yellow oil; \(\text{1H NMR (500 MHz, CDCl\textsubscript{3}):}\ delta 8.64 (d, J = 8.3 Hz, 1H), 8.23 (d, J = 8.9 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.76-7.72 (m, 1H), 7.59-7.55 (m, 1H), 7.35 (d, J = 8.9 Hz, 1H), 3.91 (s, 3H). \text{13C NMR (125 MHz, CDCl\textsubscript{3}):}\ delta 189.27 (d, J\text{_{CF}} = 17.9 Hz), 174.38 (d, J\text{_{CF}} = 0.9 Hz), 162.72 (d, J\text{_{CF}} = 36.6 Hz), 141.95, 130.92, 130.26, 128.96, 128.94, 126.55, 123.39, 113.10, 110.25, 103.73 (d, J\text{_{CF}} = 249.7 Hz), 53.84. \text{The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm):} t\text{R} = 21.4 \text{ min (major), } t\text{R} = 31.4 \text{ min (minor). MS (ES+): m/z =261.06 ([M+H])} \end{align*}

methyl \((R)-2\text{-fluoro-3-oxo-2,3-dihydrornaphtho}[2,3-b]\text{furan-2-carboxylate (5r)}\)

\[
\begin{align*}
\text{5r}
\end{align*}
\]

Yellow solid; \(\text{1H NMR (500 MHz, CDCl\textsubscript{3}):}\ delta 8.37 (s, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.84 (d, J = 8.3 Hz, 1H), 7.68-7.65 (m, 1H), 7.52-7.48 (m, 2H), 3.91 (s, 3H). \text{13C NMR (125 MHz, CDCl\textsubscript{3}):}\ delta 189.60 (d, J\text{_{CF}} = 19.1 Hz), 174.38 (d, J\text{_{CF}} = 0.9 Hz), 162.93 (d, J\text{_{CF}} = 39.2 Hz), 139.55, 131.10, 130.95, 130.12, 128.58, 127.85, 126.00, 117.36, 108.42, 104.03 (d, J\text{_{CF}} = 248.7 Hz), 53.82. \text{The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH= 90:10, flow rate 1.0 mL/min, 254nm):} t\text{R} = 29.3 \text{ min (minor), } t\text{R} = 42.2 \text{ min (major). MS (ES+): m/z =261.05 ([M+H])} \end{align*}

methyl 2-fluoro-3-oxo-2,3-dihydrobenzo[b]thiophene-2-carboxylate (6a)
The product was synthesized according to the general procedure as yellow oil in 80\% overall yield. 1H NMR (500 MHz, Chloroform-d) δ 8.01 (d, $J = 8.1$ Hz, 1H), 7.89 (d, $J = 8.3$ Hz, 1H), 7.67-7.63 (m, 1H), 7.54 (t, $J = 7.6$ Hz, 1H), 3.93 (s, 3H). 13C NMR (126 MHz, Chloroform-d) δ 181.47 (d, $J_{CF} = 19.0$ Hz), 178.24, 161.98 (d, $J_{CF} = 35.0$ Hz), 149.23, 131.30, 125.98, 124.91, 123.22, 109.68 (d, $J_{CF} = 258.1$ Hz), 54.02. The enantiomeric excess was determined by HPLC with an IC-H column at 254nm (2-propanol:hexane=5: 95), 1.0 mL/min; $t_R =11.0$ min (major), 12.3 min (minor). 99\% ee.

tert-butyl 2-fluoro-3-oxo-2,3-dihydrobenzo[b]thiophene-2-carboxylate (6b)

The product was synthesized according to the general procedure as yellow oil in 88\% overall yield. 1H NMR (500 MHz, Chloroform-d) δ 7.85 – 7.79 (m, 1H), 7.67 – 7.61 (m, 1H), 7.38 (d, $J = 8.0$ Hz, 1H), 7.34-7.28 (m, 1H), 1.47 (s, 9H). 13C NMR (126 MHz, Chloroform-d) δ 192.18 (d, $J_{CF} = 16.0$ Hz), 163.73 (d, $J_{CF} = 32.2$ Hz), 149.00, 137.25, 128.06, 126.35, 124.33, 124.31, 98.31 (d, $J_{CF} = 240.8$ Hz), 85.32, 27.71. The enantiomeric excess was determined by HPLC with an OJ-H column at 254nm (2-propanol: hexane=10: 90), 1.0 mL/min; $t_R =$17.9 min (minor), 19.8 min (major). 93\% ee.

ethyl 1-fluoro-2-oxocyclopentane-1-carboxylate (8a)

Coloreless oil. 1H NMR (500 MHz, Chloroform-d) δ = 4.26-4.19 (m, 2H), 2.53 – 2.45 (m, 1H), 2.44-2.40 (m, 2H), 2.30-2.20 (m, 1H), 2.14-2.03 (m, 2H), 1.24 (t, $J = 7.1$ Hz,
ethyl 1-fluoro-2-oxocyclohexane-1-carboxylate (8b)

White solid; 1H NMR (500 MHz, CDCl$_3$): 1H NMR (500 MHz, CDCl$_3$) δ 4.32-4.27 (m, 2H), 2.75-2.57 (m, 2H), 2.52-2.42 (m, 1H), 2.20-2.09 (m, 1H), 1.99-1.79 (m, 4H), 1.32 (t, J = 7.1 Hz, 3H). 13C NMR (125 MHz, CDCl$_3$): δ 201.79 (d, J_{CF} = 20.0 Hz), 166.89 (d, J_{CF} = 24.8 Hz), 96.30 (d, J_{CF} = 196.6 Hz), 62.31, 39.58, 35.98 (d, J_{CF} = 21.7 Hz), 26.50, 20.91 (d, J_{CF} = 5.9 Hz), 13.95. The enantiomeric excess was determined by HPLC (Daicel Chiralpak AS-H, Hexane: iPrOH= 98:2, flow rate 0.5ml/min, 220nm): t_R = 68.4 min (minor), t_R = 142.4 min (major). MS (ES$^+$): m/z = 189.07 ([M+H]$^+$)

3-acetyl-3-fluorodihydrofuran-2(3H)-one (8c)

Coloreless oil. 1H NMR (500 MHz, Chloroform-d) δ = 4.44-4.29 (m, 2H), 2.77-2.70 (m, 1H), 2.55-2.44 (m, 1H), 2.33 (d, J = 4.9 Hz, 3H). 13C NMR (125 MHz, Chloroform-d) δ = 203.08 (d, J_{CF} = 31.2 Hz), 169.14 (d, J_{CF} = 24.2 Hz), 96.15 (d, J_{CF} = 204.0 Hz), 65.59 (d, J_{CF} = 4.6 Hz), 31.78 (d, J_{CF} = 21.3 Hz), 25.45. The enantiomeric excess was determined by HPLC (Daicel Chiralpak IC-H, Hexane: iPrOH= 95:5, flow rate 1.0 mL/min, 210nm): t_R =14.1 min (minor), t_R = 15.0 min (major).

ethyl 2-fluoro-2-methyl-3-oxo-3-phenylpropanoate (8d)
Coloreless oil. 1H NMR (500 MHz, Chloroform-d) $\delta = 8.07$-8.04 (m, 2H), 7.62-7.58 (m, 1H), 7.49-7.46 (m, 2H), 4.30-4.23 (m, 2H), 1.88 (d, $J = 22.5$ Hz, 3H), 1.20 (t, $J = 7.1$ Hz, 3H). 13C NMR (125 MHz, Chloroform-d) $\delta = 191.68$ (d, $J_{CF} = 25.3$ Hz), 168.43 (d, $J_{CF} = 25.5$ Hz), 133.89, 133.37, 133.35, 129.72, 129.67, 128.61, 96.99 (d, $J_{CF} = 194.7$ Hz), 62.56, 20.96 (d, $J_{CF} = 23.5$ Hz), 13.86. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OB-H, Hexane: iPrOH = 96:4, flow rate 0.7 mL/min, 254nm): $t_R =$ 14.4 min (minor), $t_R =$ 17.0 min (major).

ethyl 2-benzyl-2-fluoro-3-oxobutanoate (8e)

Coloreless oil. 1H NMR (500 MHz, Chloroform-d) $\delta = 7.31$-7.21 (m, 5H), 4.23 (q, $J = 7.1$, 2H), 3.41 (dd, $J = 25.8$, 7.6 Hz, 2H), 2.13 (d, $J = 5.1$ Hz, 3H), 1.25 (t, $J = 7.2$ Hz, 3H). 13C NMR (125 MHz, Chloroform-d) $\delta = 202.27$ (d, $J_{CF} = 29.5$ Hz), 165.63 (d, $J_{CF} = 25.4$ Hz), 133.02, 130.30, 128.33, 127.35, 99.91 (d, $J_{CF} = 200.1$ Hz), 62.57, 39.66 (d, $J_{CF} = 20.2$ Hz), 26.15, 13.86. The enantiomeric excess was determined by HPLC (Daicel Chiralpak OJ-H, Hexane: iPrOH = 95:5, flow rate 1.0 mL/min, 210nm): $t_R =$ 23.0 min (minor), $t_R =$ 37.1 min (major).
3. NMR spectra
4. HPLC analysis

![HPLC analysis graph]

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Time [min]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1H N/O/N</td>
<td>11.230</td>
<td>35.709</td>
</tr>
<tr>
<td>2</td>
<td>1H N/O/N</td>
<td>13.390</td>
<td>4.20%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.00%</td>
</tr>
</tbody>
</table>
2c
Table 1: Different Y Units

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Time [Min]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNKNOWN</td>
<td>26.036</td>
<td>47.735</td>
</tr>
<tr>
<td>2</td>
<td>UNKNOWN</td>
<td>40.764</td>
<td>52.185</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>

Table 2: GAUSSIAN 16

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Time [Min]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNKNOWN</td>
<td>26.036</td>
<td>2.126</td>
</tr>
<tr>
<td>2</td>
<td>UNKNOWN</td>
<td>40.764</td>
<td>97.874</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
<tr>
<td>#</td>
<td>Name</td>
<td>Time (Min)</td>
<td>Area [%]</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>UNKNOWN</td>
<td>1.560</td>
<td>53.71%</td>
</tr>
<tr>
<td>2</td>
<td>UNKNOWN</td>
<td>10.860</td>
<td>49.78%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>100.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Time (Min)</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNKNOWN</td>
<td>7.098</td>
<td>98.21%</td>
</tr>
<tr>
<td>2</td>
<td>UNKNOWN</td>
<td>10.558</td>
<td>1.79%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>100.00%</td>
</tr>
<tr>
<td>#</td>
<td>Name</td>
<td>Time (min)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>UNKNOWN1</td>
<td>44.22</td>
<td>10.557</td>
</tr>
<tr>
<td>2</td>
<td>UNKNOWN2</td>
<td>59.019</td>
<td>7.443</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18.000</td>
</tr>
</tbody>
</table>

Diagram 1:

- Graph showing peak areas with retention times.

Diagram 2:

- Graph showing peak areas with retention times.

S81
<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Time (min)</th>
<th>Area % (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unknown</td>
<td>20.412</td>
<td>50.750</td>
</tr>
<tr>
<td>2</td>
<td>unknown</td>
<td>24.112</td>
<td>49.248</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Time (min)</th>
<th>Area % (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unknown</td>
<td>21.805</td>
<td>56.892</td>
</tr>
<tr>
<td>2</td>
<td>unknown</td>
<td>24.978</td>
<td>43.108</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
<tr>
<td>#</td>
<td>Name</td>
<td>Time (min)</td>
<td>Area % (%)</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>UNK1050</td>
<td>12.988</td>
<td>49.082</td>
</tr>
<tr>
<td>2</td>
<td>UNK1050</td>
<td>13.892</td>
<td>50.913</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Time (min)</th>
<th>Area % (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNK1050</td>
<td>12.999</td>
<td>77.622</td>
</tr>
<tr>
<td>2</td>
<td>UNK1050</td>
<td>13.752</td>
<td>22.378</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>
5a

Table 1: Summary of Analysis Results

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Time (min)</th>
<th>Area % (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNKNOWN</td>
<td>18.345</td>
<td>99.763</td>
</tr>
<tr>
<td>2</td>
<td>UNKNOWN</td>
<td>19.345</td>
<td>99.763</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>

Table 2: Summary of Analysis Results

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Time (min)</th>
<th>Area % (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UNKNOWN</td>
<td>18.345</td>
<td>99.763</td>
</tr>
<tr>
<td>2</td>
<td>UNKNOWN</td>
<td>19.345</td>
<td>99.763</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>

Chemical Structure Image:

![Chemical Structure](image)
![Chemical Structure](attachment:image.png)

5d

Table 1:

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Time [Min]</th>
<th>Area % [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unnamed</td>
<td>5.63</td>
<td>43.756</td>
</tr>
<tr>
<td>2</td>
<td>Unnamed</td>
<td>5.903</td>
<td>56.244</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>

Table 2:

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Time [Min]</th>
<th>Area % [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unnamed</td>
<td>5.867</td>
<td>99.943</td>
</tr>
<tr>
<td>2</td>
<td>Unnamed</td>
<td>5.903</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>100.000</td>
</tr>
</tbody>
</table>

S91
5f
5k
50
$5p$
6a
8b
