Supporting Information

Endogenous water-triggered and ultrasound accelerated synthesis of 1,5disubstituted tetrazoles *via* solvent and catalyst-free Ugi-azide reaction

Shrikant G. Pharande, Alma Rosa Corrales Escobosa and Rocío Gámez-Montaño*

Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, C.P. 36050, Gto., México.

e-mail (R.G.-M.): rociogm@ugto.mx

Contents

General information	S1
Experimental procedure and spectral data (4a-v)	S2-S34
GC-MS experiment	S35
X-ray data of compound 4q	S36-S40

General information

All reactions were carried out in 10 ml stoppered glass tube. Reactions were monitored by silica gel TLC plates, using mixture of hexane and ethyl acetate as eluents. Flash column chromatography was performed using silica gel (230–400 mesh) and mixtures in different proportions of hexanes with ethyl acetate as mobile phase. Melting points were determined on a Fisher-Johns apparatus and were uncorrected. All solvents were distilled prior use. Aldehydes and amines were purchased from Sigma Aldrich.

¹H NMR spectra were recorded on Bruker Advance III spectrometer (500 MHz) at 295 K in CDCl₃; chemical shifts (δ in ppm) and coupling constants (J in Hz) are reported in standard fashion with reference to either internal standard tetramethylsilane (TMS) ($\delta_{H} = 0$ ppm) or CHCl₃ ($\delta_{H} = 7.25$ ppm). ¹³C NMR spectra were recorded on Bruker Advance III spectrometer (126 MHz) at room temperature in CDCl₃; chemical shifts (δ in ppm) are reported relative to CHCl₃ ($\delta_{C} = 77.00$ ppm). In ¹H NMR, the following abbreviations were used throughout: s = singlet, d = doublet, m = multiplet and bs = broad singlet. The assignment of signals were confirmed by ¹H and ¹³C spectral data. IR spectra were recorded by ATR method using neat compounds. The wavelengths are reported in reciprocal centimeters (v_{max} /cm⁻¹). HRMS spectra were acquired via electrospray ionization ESI (+) and recorded via the TOF method on Bruker mass spectrometer. Ultrasound irradiated reactions were performed in 10 ml stoppered glass tube placed into a water bath of a Branson 1510 sonicator cleaner working at 42 kHz ± 6% frequencies. GC-MS experiment was carried out on Scion GC-MS 456 TQ.

General procedure for the synthesis of 1,5-disubstituted tetrazole (4)

A dry 10 ml tube was charged with aldehyde (1 mmol), amine (1 mmol), an isocyanide (1 mmol) and TMSN₃ (1 mmol). The reaction was then sonicated in an ultrasonic cleaner water bath at room temperature for 30 mins. The resulting crude products were purified by column chromatography using Hexane - AcOEt (7/3 V/V) as eluent.

Spectral data

N-((1-(tert-butyl)-1H-tetrazol-5-yl)(4-chlorophenyl)methyl)aniline (4a)

Based on *GP*, 100 mg 4-Chlorobenzaldehyde (0.71 mmol), 0.065 cm³ aniline (0.71 mmol), 0.080 cm³ ter. Butyl isocyanide (0.71 mmol), and 0.093 cm³ TMS-azide (0.71 mmol) were reacted together to afford 237 mg (97%) as a white solid. Melting range 144-145°C, $R_f = 0.45$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.29 (m, 4H), 7.18 – 7.13 (m, 2H), 6.79 – 6.75 (m, 1H), 6.65 (d, *J* = 7.6 Hz, 2H), 6.11 (d, *J* = 6.2 Hz, 1H), 4.78 (d, *J* = 5.6 Hz, 1H), 1.71 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 155.03, 145.54, 136.81, 134.71, 129.62, 129.43, 129.19, 119.64, 114.42, 61.95, 53.93, 30.29; FT-IR (ATR) v_{max} /cm⁻¹ 3330.5, 3052.5, 2940.9, 1603.6, 1284.1; HRMS (ESI+): *m*/z calcd. for C₁₈H₂₀ClN₅⁺ 342.1480, found 342.1474.

¹H NMR spectra of the compound **4a**

¹³C NMR spectra of the compound **4a**

N-((4-chlorophenyl)(1-cyclohexyl-1H-tetrazol-5-yl)methyl)aniline (4b)

Based on *GP*, 100 mg 4-Chlorobenzaldehyde (0.71 mmol), 0.065 cm³ aniline (0.71 mmol), 0.088 cm³ cyclohexyl isocyanide (0.71 mmol), and 0.093 cm³ TMS-azide (0.71 mmol) were reacted together to afford 212 mg (81%) as a brown white solid. Melting range 127-129°C, $R_f = 0.45$ (Hexane-AcOEt = 7/3 V/V), ¹H **NMR** (500 MHz, CDCl₃) δ 7.35 (s, 4H), 7.19 – 7.13 (m, 2H), 6.80 - 6.76 (m, 1H), 6.65 (d, *J* = 7.7 Hz, 2H), 5.86 (d, *J* = 6.6 Hz, 1H), 4.96 (d, *J* = 6.6 Hz, 1H), 4.25 (m, 1H), 2.06 – 1.99 (m, 1H), 1.96 – 1.89 (m, 2H), 1.87 – 1.80 (m, 2H), 1.75 – 1.70 (m, 1H), 1.51 – 1.42 (m, 2H), 1.33 – 1.28 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 154.06, 145.35, 136.37, 134.85, 129.49, 129.46, 128.63, 119.48, 114.01, 58.52, 53.14, 32.80, 32.78, 25.36, 25.28, 24.68; **FT-IR** (ATR) v_{max} /cm⁻¹ 3369.8, 3054.2, 2932.6, 1601.9, 1093.4; **HRMS** (ESI+): *m/z* calcd. for C₂₀H₂₂ClN₅⁺ 368.1636, found 368.1622.

¹H NMR spectra of the compound **4b**

¹³C NMR spectra of the compound **4b**

N-((4-chlorophenyl)(1-(4-methoxyphenyl)-1H-tetrazol-5-yl)methyl)aniline (4c)

Based on *GP*, 100 mg 4-Chlorobenzaldehyde (0.71 mmol), 0.065 cm³ aniline (0.71 mmol), 94 mg. 4methoxyphenyl isocyanide (0.71 mmol), and 0.093 cm³ TMS-azide (0.71 mmol) were reacted together to afford 241 mg (86%) as a light yellow solid. Melting range 153-155°C, $R_f = 0.51$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.28 (m, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 7.18 – 7.15 (m, 2H), 7.15 – 7.11 (m, 2H), 7.06 – 7.02 (m, 2H), 6.77 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 7.9 Hz, 2H), 5.81 (d, *J* = 8.2 Hz, 1H), 4.93 (d, *J* = 8.2 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.56, 155.85, 145.19, 136.20, 134.83, 129.52, 129.40, 128.84, 127.14, 125.85, 119.50, 115.17, 114.04, 55.89, 52.50; FT-IR (ATR) v_{max} /cm⁻¹ 3306.1, 3026.4, 2966.1, 1600.0, 1259.2; HRMS (ESI+): *m/z* calcd. for C₂₁H₁₈ClN₅O⁺ 392.1272, found 392.1263.

¹H NMR spectra of the compound **4c**

¹³C NMR spectra of the compound **4c**

3-bromo-N-((1-(tert-butyl)-1H-tetrazol-5-yl)(4-chlorophenyl)methyl)aniline (4d)

Based on *GP*, 100 mg 4-Chlorobenzaldehyde (0.71 mmol), 0.076 cm³ 3-bromoaniline (0.71 mmol), 0.080 cm³ ter. butyl isocyanide (0.71 mmol), and 0.093 cm³ TMS-azide (0.71 mmol) were reacted together to afford 223 mg (74%) as a white solid. Melting range 165-168°C, $R_f = 0.45$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.32 (m, 2H), 7.30 – 7.27 (m, 2H), 7.02 – 6.98 (m, 1H), 6.88 (d, *J* = 7.9 Hz, 1H), 6.78 – 6.77 (m, 1H), 6.55 (dd, *J* = 8.1, 2.1 Hz, 1H), 6.06 (d, *J* = 9.2 Hz, 1H), 4.91 (d, *J* = 9.2 Hz, 1H), 1.72 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 154.67, 146.86, 136.22, 135.03, 130.93, 129.59, 129.20, 123.48, 122.46, 116.89, 113.05, 62.09, 53.76, 30.32; FT-IR (ATR) v_{max} /cm⁻¹ 3296.7, 2979.9, 2921.6, 1595.4, 1089.3; HRMS (ESI+): *m/z* calcd. for C₁₈H₁₉BrClN₅⁺ 420.0585, found 420.0573.

 ^1H NMR spectra of the compound 4d

 $^{\rm 13}{\rm C}$ NMR spectra of the compound ${\rm 4d}$

3-bromo-N-((4-chlorophenyl)(1-cyclohexyl-1H-tetrazol-5-yl)methyl)aniline (4e)

Based on *GP*, 100 mg 4-Chlorobenzaldehyde (0.71 mmol), 0.076 cm³ 3-bromoaniline (0.71 mmol), 0.088 cm³ cyclohexyl isocyanide (0.71 mmol), and 0.093 cm³ TMS-azide (0.71 mmol) were reacted together to afford 200 mg (83%) as a light yellow oil. $R_f = 0.46$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.31 (m, 4H), 7.10 - 6.97 (m, 1H), 6.90 – 6.86 (m, 1H), 6.79 (t, *J* = 2.0 Hz, 1H), 6.56 (dd, *J* = 8.3, 2.0 Hz, 1H), 5.79 (d, *J* = 6.8 Hz, 1H), 5.22 (d, *J* = 6.8 Hz, 1H), 4.23 – 4.16 (m, 1H), 2.09 – 1.99 (m, 1H), 1.95 (d, *J* = 11.6 Hz, 2H), 1.87 – 1.78 (m, 2H), 1.76 – 1.72 (m, 1H), 1.43 - 1.34 (m, 2H), 1.31 – 1.23 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 153.87, 146.73, 135.95, 135.22, 130.86, 129.73, 128.78, 123.40, 122.30, 121.46, 117.93, 116.63, 113.74, 112.81, 58.68, 52.90, 32.90, 25.46, 25.37, 24.77; FT-IR (ATR) v_{max} /cm⁻¹ 3323.2, 3065.6, 2931.0, 1594.1, 1479.3; HRMS (ESI+): *m/z* calcd. for C₂₀H₂₁BrClNs⁺ 446.0741, found 446.0731.

¹H NMR spectra of the compound **4e**

¹³C NMR spectra of the compound **4e**

N-((1-(tert-butyl)-1H-tetrazol-5-yl)(2,3-dimethoxyphenyl)methyl)aniline (4f)

Based on *GP*, 100 mg 2,3-dimethoxybenzaldehyde (0.60 mmol), 0.060 cm³ aniline (0.60 mmol), 0.068 cm³ ter. Butyl isocyanide (0.60 mmol), and 0.079 cm³ TMS-azide (0.60 mmol) were reacted together to afford 200 mg (90%) as a light yellow solid. Melting range 149-150°C, $R_f = 0.50$ (Hexane-AcOEt = 7/3 V/V), ¹H **NMR** (500 MHz, CDCl₃) δ 7.19 – 7.14 (m, 2H), 7.03 (t, *J* = 8.0 Hz, 1H), 6.91 (dd, *J* = 8.2, 1.3 Hz, 1H), 6.84 (dd, *J* = 7.8, 1.0 Hz, 1H), 6.78 – 6.73 (m, 1H), 6.69 (d, *J* = 7.7 Hz, 2H), 6.60 (d, *J* = 10.2 Hz, 1H), 4.55 (d, *J* = 10.1 Hz, 1H), 3.87 (s, 3H), 3.74 (s, 3H), 1.69 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 155.57, 152.71, 146.07, 146.04, 132.20, 129.60, 124.69, 119.45, 119.36, 114.38, 112.89, 61.92, 60.83, 55.92, 48.36, 29.96; **FT-IR** (ATR) v_{max}/cm^{-1} 3402.6, 3005.6, 2942.4, 1601.3, 1269.0; **HRMS** (ESI+): *m/z* calcd. for C₂₀H₂₅N₅O₂⁺ 368.2081, found 368.2072.

 $^{\rm 13}{\rm C}$ NMR spectra of the compound ${\rm 4f}$

N-((1-cyclohexyl-1H-tetrazol-5-yl)(2,3-dimethoxyphenyl)methyl)aniline (4g)

Based on *GP*, 100 mg 2,3-dimethoxybenzaldehyde (0.60 mmol), 0.060 cm³ aniline (0.60 mmol), 0.074 cm³ cyclohexyl isocyanide (0.60 mmol), and 0.079 cm³ TMS-azide (0.60 mmol) were reacted together to afford 220 mg (93%) as a cream white solid. Melting range 111-113°C, $R_f = 0.52$ (Hexane-AcOEt = 7/3 V/V), ¹H **NMR** (500 MHz, CDCl₃) δ 7.18 – 7.13 (m, 2H), 7.04 – 7.00 (m, 1H), 6.94 (dd, *J* = 7.9, 1.4 Hz, 1H), 6.88 (dd, *J* = 8.1, 1.4 Hz, 1H), 6.78 – 6.74 (m, 1H), 6.69 (d, *J* = 7.7 Hz, 2H), 6.27 (d, *J* = 8.4 Hz, 1H), 4.83 (d, *J* = 8.4 Hz, 1H), 4.36 – 4.29 (m, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 2.0 - 1.95 (m, 2H), 1.94-1.89 (m, 1H), 1.84 – 1.78 (m, 2H), 1.73 – 1.64 (m, 2H), 1.55-1.50 (m, 1H), 1.29 – 1.22 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 155.15, 152.63, 146.34, 145.97, 131.25, 129.52, 124.74, 119.58, 119.25, 114.24, 113.01, 61.01, 58.11, 55.96, 47.59, 33.08, 32.69, 25.50, 25.37, 24.94; **FT-IR** (ATR) v_{max} /cm⁻¹ 3353.1, 3020.3, 2935.8, 1601.2, 1280.5; **HRMS** (ESI+): *m/z* calcd. for C₂₂H₂₇N₅O₂⁺ 394.2237, found 394.2227.

¹H NMR spectra of the compound **4g**

¹³C NMR spectra of the compound **4g**

N-((1-(tert-butyl)-1H-tetrazol-5-yl)(3,4-dimethoxyphenyl)methyl)aniline (4h)

Based on *GP*, 100 mg 3,4-dimethoxybenzaldehyde (0.60 mmol), 0.060 cm³ aniline (0.60 mmol), 0.068 cm³ ter. Butyl isocyanide (0.60 mmol), and 0.079 cm³ TMS-azide (0.60 mmol) were reacted together to afford 193 mg (87%) as a light yellow solid. Melting range113-115°C, $R_f = 0.47$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 7.15 (dd, *J* = 11.3, 4.6 Hz, 2H), 6.92 (s, 1H), 6.79 (s, 2H), 6.78 – 6.73 (m, 1H), 6.68 – 6.63 (m, 2H), 6.07 (d, *J* = 8.9 Hz, 1H), 4.78 (d, *J* = 8.7 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 1.69 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 155.49, 149.74, 149.41, 145.99, 130.61, 129.51, 120.43, 119.39, 114.49, 111.21, 110.81, 61.84, 56.10, 56.02, 54.63, 30.20; FT-IR (ATR) v_{max} /cm⁻¹ 3387.4, 3001.4, 2955.4, 1603.4, 1253.3; HRMS (ESI+): m/z calcd. for $C_{20}H_{25}N_5O_2^+$ 368.2081, found 368.2075.

¹H NMR spectra of the compound **4h**

 $^{\rm 13}{\rm C}$ NMR spectra of the compound ${\bf 4h}$

N-((1-cyclohexyl-1H-tetrazol-5-yl)(3,4-dimethoxyphenyl)methyl)aniline (4i)

Based on *GP*, 100 mg 3,4-dimethoxybenzaldehyde (0.60 mmol), 0.060 cm³ aniline (0.60 mmol), 0.074 cm³ cyclohexyl isocyanide (0.60 mmol), and 0.079 cm³ TMS-azide (0.60 mmol) were reacted together to afford 200 mg (84%) as a light yellow solid. Melting range 135-138°C, $R_f = 0.51$ (Hexane-AcOEt = 7/3 V/V), ¹H **NMR** (500 MHz, CDCl₃) δ 7.18 – 7.12 (m, 2H), 6.93 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.88 (d, *J* = 2.1 Hz, 1H), 6.82 (d, *J* = 10 Hz, 1H), 6.76 (t, *J* = 7.4 Hz, 1H), 6.66 (dd, *J* = 8.5, 0.9 Hz, 2H), 5.81 (d, *J* = 6.1 Hz, 1H), 4.98 (d, *J* = 6.0 Hz, 1H), 4.29 (m, 1H), 3.85 (s, 3H), 3.81 (s, 3H), 2.08 – 2.0 (m, 1H), 1.94 (d, *J* = 11.7 Hz, 2H), 1.82 – 1.71 (m, 3H), 1.42 – 1.34 (m, 2H), 1.28 – 1.22 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 154.47, 149.84, 149.44, 145.78, 130.23, 129.37, 119.65, 119.16, 113.94, 111.14, 110.01, 58.42, 56.01, 55.97, 53.79, 32.71, 25.44, 25.33, 24.72; FT-IR (ATR) v_{max} /cm⁻¹ 3379.5, 3004.2, 2929.9, 1605.1, 1239.1; HRMS (ESI+): *m/z* calcd. for C₂₂H₂₇N₅O₂⁺ 394.2237, found 394.2229.

¹H NMR spectra of the compound **4i**

¹³C NMR spectra of the compound **4i**

N-((1-(tert-butyl)-1H-tetrazol-5-yl)(2,3-dimethoxyphenyl)methyl)-2-chloroaniline (4j)

Based on *GP*, 100 mg 2,3-dimethoxybenzaldehyde (0.60 mmol), 0.056 cm³ 2-chloroaniline (0.60 mmol), 0.068 cm³ ter. butyl isocyanide (0.60 mmol), and 0.079 cm³ TMS-azide (0.60 mmol) were reacted together to afford 163 mg (67%) as a white solid. Melting range 131-133°C, $R_f = 0.49$ (Hexane-AcOEt = 7/3 V/V), ¹**H NMR** (500 MHz, CDCl₃) δ 7.28 (dd, J = 7.9, 1.4 Hz, 1H), 7.08 – 7.03 (m, 2H), 6.94 – 6.90 (m, 2H), 6.69 (td, J = 7.7, 1.3 Hz, 1H), 6.58 (dd, J = 5.3, 4.1 Hz, 2H), 5.06 (d, J = 9.4 Hz, 1H), 3.87 (s, 3H), 3.66 (s, 3H), 1.74 (s, 9H); ¹³**C NMR** (126 MHz, CDCl₃) δ 155.14, 152.57, 146.09, 141.78, 131.33, 129.77, 128.01, 124.70, 120.28, 119.33, 119.17, 113.04, 112.20, 62.13, 60.60, 55.90, 47.86, 29.96; **FT-IR** (ATR) v_{max} /cm⁻¹ 3407.1, 2937.9, 2834.7, 1595.9, 1275.5; **HRMS** (ESI+): *m/z* calcd. for C₂₀H₂₄CIN₅O₂⁺ 402.1691, found 402.1686.

 $^{\rm 13}{\rm C}$ NMR spectra of the compound ${\rm 4j}$

2-chloro-N-((1-cyclohexyl-1H-tetrazol-5-yl)(2,3-dimethoxyphenyl)methyl)aniline (4k)

Based on *GP*, 100 mg 2,3-dimethoxybenzaldehyde (0.60 mmol), 0.056 cm³ 2-chloroaniline (0.60 mmol), 0.074 cm³ cyclohexyl isocyanide (0.60 mmol), and 0.079 cm³ TMS-azide (0.60 mmol) were reacted together to afford 203 mg (79%) as a creamy white solid. Melting range 115-117°C, $R_f = 0.50$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 7.9 Hz, 1H), 7.10 – 7.01 (m, 2H), 6.92 (dd, *J* = 17.1, 7.6 Hz, 2H), 6.69 (dd, *J* = 11.1, 4.2 Hz, 1H), 6.63 (d, *J* = 8.1 Hz, 1H), 6.33 (d, *J* = 8.0 Hz, 1H), 5.43 (d, *J* = 7.7 Hz, 1H), 4.39 – 4.32 (m, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 2.05 – 1.97 (m, 2H), 1.92 (d, *J* = 12.6 Hz, 1H), 1.86 – 1.80 (m, 2H), 1.71 (bs, 1H), 1.55 (d, *J* = 11.2 Hz, 1H), 1.30 – 1.21 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.61, 152.63, 146.43, 141.88, 130.51, 129.68, 127.90, 124.81, 120.38, 119.45, 119.16, 113.20, 112.39, 61.04, 58.28, 55.98, 47.29, 33.10, 32.81, 25.51, 25.40, 24.95; FT-IR (ATR) v_{max} /cm⁻¹ 3414.4, 3015.7, 2935.8, 1590.1, 1267.7; HRMS (ESI+): *m*/z calcd. for C₂₂H₂₆ClN₅O₂⁺ 428.1847, found 428.1835.

¹H NMR spectra of the compound **4**k

¹³C NMR spectra of the compound **4**k

N-((1-(tert-butyl)-1H-tetrazol-5-yl)(3,4-dimethoxyphenyl)methyl)-2-chloroaniline (4l)

Based on *GP*, 100 mg 3,4-dimethoxybenzaldehyde (0.60 mmol), 0.076 cm³ 2-chloroaniline (0.60 mmol), 0.068 cm³ ter. butyl isocyanide (0.60 mmol), and 0.079 cm³ TMS-azide (0.60 mmol) were reacted together to afford 137 mg (57%) as a white semisolid, $R_f = 0.57$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 7.27 (dd, J = 8.0, 1.5 Hz, 1H), 7.07 – 7.03 (m, 1H), 6.94 (d, J = 2.0 Hz, 1H), 6.84 (dd, J = 8.3, 2.0 Hz, 1H), 6.80 (d, J = 8.3 Hz, 1H), 6.71 – 6.67 (m, 1H), 6.60 (dd, J = 8.2, 1.2 Hz, 1H), 6.10 (d, J = 8.6 Hz, 1H), 5.38 (d, J = 8.7 Hz, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 1.72 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 155.11, 149.82, 149.53, 141.95, 129.98, 129.83, 127.78, 120.84, 120.43, 119.41, 112.87, 111.20, 110.68, 61.99, 56.10, 56.02, 54.08, 30.21; FT-IR (ATR) v_{max} /cm⁻¹ 3385.3, 3002.4, 2960.7, 1593.8, 1262.3; HRMS (ESI+): m/z calcd. for C₂₀H₂₄ClN₅O₂⁺ 402.1691, found 402.1683.

¹H NMR spectra of the compound **4**I

 $^{\rm 13}{\rm C}\,{\rm NMR}$ spectra of the compound ${\rm 4I}$

2-chloro-N-((1-cyclohexyl-1H-tetrazol-5-yl)(3,4-dimethoxyphenyl)methyl)aniline (4m)

Based on *GP*, 100 mg 3,4-dimethoxybenzaldehyde (0.60 mmol), 0.076 cm³ 2-chloroaniline (0.60 mmol), 0.074 cm³ cyclohexyl isocyanide (0.60 mmol), and 0.079 cm³ TMS-azide (0.60 mmol) were reacted together to afford 162 mg (63%) as a white solid. Melting range 146-148°C, $R_f = 0.55$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 7.29 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.08 – 7.03 (m, 1H), 6.91 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.87 (d, *J* = 2.1 Hz, 1H), 6.84 (d, *J* = 8 Hz, 1H), 6.73 – 6.68 (m, 1H), 6.63 (dd, *J* = 8.2, 1.1 Hz, 1H), 5.97 (d, *J* = 5.8 Hz, 1H), 5.49 (d, *J* = 5.7 Hz, 1H), 4.34 – 4.27 (m, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 2.09 – 2.00 (m, 1H), 1.95 – 1.86 (m, 2H), 1.83 – 1.77 (m, 2H), 1.72 – 1.66 (m, 2H), 1.44 – 1.38 (m, 1H), 1.34 – 1.25 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 154.06, 150.04, 149.69, 141.77, 129.60, 129.59, 127.99, 120.37, 119.42, 119.37, 112.61, 111.33, 109.92, 58.81, 56.17, 56.11, 53.48, 33.02, 32.78, 25.58, 25.47, 24.85, FT-IR (ATR) ν_{max}/cm^{-1} 3394.6, 3027.2, 2939.0, 1594.3, 1255.6; HRMS (ESI+): *m/z* calcd. for C₂₂H₂₆ClN₅O₂⁺ 428.1847, found 428.1832.

¹H NMR spectra of the compound **4m**

¹³C NMR spectra of the compound **4m**

N-((1-(tert-butyl)-1H-tetrazol-5-yl)(phenyl)methyl)aniline (4n)

Based on *GP*, 0.096 cm³ benzaldehyde (0.94 mmol), 0.090 cm³ aniline (0.94 mmol), 0.106 cm³ ter. Butyl isocyanide (0.94 mmol), and 0.123 cm³ TMS-azide (0.94 mmol) were reacted together to afford 229 mg (79%) as a light yellow solid. Melting range 127-128°C, $R_f = 0.40$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.29 (m, 5H), 7.16 (dd, *J* = 8.4, 7.5 Hz, 2H), 6.76 (t, *J* = 7.4 Hz, 1H), 6.67 (d, *J* = 7.7 Hz, 2H), 4.85 (bs, 1H), 1.70 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 155.37, 145.92, 138.24, 129.53, 129.24, 128.77, 127.87, 119.36, 114.39, 61.85, 54.65, 30.23; **FT-IR** (ATR) v_{max} /cm⁻¹ 3320.0, 3004.7, 2988.7, 1598.6, 1320.3; **HRMS** (ESI+): *m/z* calcd. for C₁₈H₂₁N₅⁺ 308.1869, found 308.1864.

¹H NMR spectra of the compound **4n**

 $^{\rm 13}{\rm C}$ NMR spectra of the compound ${\rm 4n}$

N-((1-cyclohexyl-1H-tetrazol-5-yl)(phenyl)methyl)aniline (40)

Based on *GP*, 0.096 cm³ benzaldehyde (0.94 mmol), 0.090 cm³ aniline (0.94 mmol), 0.117 cm³ cyclohexyl isocyanide (0.94 mmol), and 0.123 cm³ TMS-azide (0.94 mmol) were reacted together to afford 217 mg (70%) as a white solid. Melting range 112-124°C, $R_f = 0.45$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.30 (m, 5H), 7.15 (t, *J* = 7.7 Hz, 2H), 6.76 (t, *J* = 7.3 Hz, 1H), 6.67 (d, *J* = 7.7 Hz, 2H), 5.90 (d, *J* = 5.4 Hz, 1H), 5.01 (bs, 1H), 4.31 – 4.23 (m, 1H), 2.08 – 1.97 (m, 1H), 1.95 – 1.86 (m, 2H), 1.77 (t, *J* = 11.0 Hz, 2H), 1.72 – 1.68 (m, 1H), 1.39 – 1.30 (m, 2H), 1.28 – 1.16 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 154.53, 145.85, 137.98, 129.52, 129.44, 129.04, 127.42, 119.31, 114.08, 58.59, 54.06, 32.83, 25.52, 25.41, 24.85; FT-IR (ATR) ν_{max}/cm^{-1} 3406.9, 3026.5, 2941.4, 1602.0, 1262.8; HRMS (ESI+): *m/z* calcd. for C₂₀H₂₃N₅⁺ 334.2026, found 334.2021.

¹H NMR spectra of the compound **40**

¹³C NMR spectra of the compound **40**

N-((1-(4-chlorophenyl)-1H-tetrazol-5-yl)(phenyl)methyl)aniline (4p)

Based on *GP*, 0.096 cm³ benzaldehyde (0.94 mmol), 0.090 cm³ aniline (0.94 mmol), 130 mg 4-chlorophenyl isocyanide (0.94 mmol), and 0.123 cm³ TMS-azide (0.94 mmol) were reacted together to afford 285 mg (83%) as an orange solid. Melting range 140-143°C, $R_f = 0.41$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.50 (m, 2H), 7.37 – 7.33 (m, 3H), 7.30 - 7.27 (m, 2H), 7.21 – 7.17 (m, 2H), 7.16 – 7.11 (m, 2H), 6.78 (t, *J* = 7.4 Hz, 1H), 6.55 (d, *J* = 7.7 Hz, 2H), 5.87 (s, 1H), 4.84 (bs, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.14, 145.33, 137.39, 137.35, 132.00, 130.26, 129.56, 129.39, 129.11, 127.45, 127.03, 119.53, 114.03, 53.33; FT-IR (ATR) v_{max} /cm⁻¹ 3414.5, 3052.6, 2921.5, 1601.1, 1484.5; HRMS (ESI+): *m/z* calcd. for C₂₀H₁₆ClN₅⁺ 362.1167, found 362.1155.

 ^1H NMR spectra of the compound 4p

 $^{\rm 13}{\rm C}$ NMR spectra of the compound ${\rm 4p}$

N-((1-(2,6-dimethylphenyl)-1H-tetrazol-5-yl)(phenyl)methyl)aniline (4q)

Based on *GP*, 0.096 cm³ benzaldehyde (0.94 mmol), 0.090 cm³ aniline (0.94 mmol), 125 mg 2,6dimethylphenyl isocyanide (0.94 mmol), and 0.123 cm³ TMS-azide (0.94 mmol) were reacted together to afford 310 mg (95%) as a white solid. Melting range 135-136°C, $R_f = 0.46$ (Hexane-AcOEt = 7/3 V/V), ¹H **NMR** (500 MHz, CDCl₃) δ 7.41 (dd, J = 9.6, 5.7 Hz, 1H), 7.27 (s, 1H), 7.23 – 7.17 (m, 3H), 7.12 – 7.06 (m, 5H), 6.71 (t, J = 7.3 Hz, 1H), 6.58 (d, J = 7.7 Hz, 2H), 5.42 (s, 1H), 1.93 (s, 3H), 1.23 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.59, 145.57, 137.34, 137.23, 135.43, 131.55, 131.38, 129.40, 129.11, 129.07, 128.97, 128.87, 127.56, 118.96, 114.02, 53.93, 17.44, 16.84; **FT-IR** (ATR) v_{max} /cm⁻¹ 3363.9, 3062.1, 2923.4, 1601.1, 1240; **HRMS** (ESI+): m/z calcd. for C₂₂H₂₁N₅⁺ 356.1869, found 356.1860.

¹H NMR spectra of the compound **4q**

¹³C NMR spectra of the compound **4q**

N-((1-(tert-butyl)-1H-tetrazol-5-yl)(4-nitrophenyl)methyl)aniline (4r)

Based on *GP*, 100 mg 4-nitrobenzaldehyde (0.66 mmol), 0.061 cm³ aniline (0.66 mmol), 0.075 cm³ ter. Butyl isocyanide (0.66 mmol), and 0.086 cm³ TMS-azide (0.66 mmol) were reacted together to afford 221 mg (94%) as a reddish solid. Melting range 136-138°C, $R_f = 0.45$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 8.23 -8.19 (m, 2H), 7.59 (d, *J* = 6.8 Hz, 2H), 7.21 – 7.13 (m, 2H), 6.84 – 6.77 (m, 1H), 6.65 (d, *J* = 6.6 Hz, 2H), 6.24 (d, *J* = 9.2 Hz, 1H), 4.82 (dd, *J* = 52.8, 9.3 Hz, 1H), 1.77 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 154.21, 147.93, 145.31, 145.24, 144.85, 144.81, 129.67, 128.58, 124.24, 119.97, 119.91, 114.20, 114.13, 62.14, 53.61, 30.22; FT-IR (ATR) v_{max} /cm⁻¹ 3328.9, 3051.4, 2990.4, 1598.3, 1524.9, 1348.7; HRMS (ESI+): *m/z* calcd. for C₁₈H₂₀N₆O₂⁺ 353.1720, found 353.1711.

¹H NMR spectra of the compound **4r**

 $^{\rm 13}{\rm C}\,{\rm NMR}$ spectra of the compound ${\rm 4r}$

N-((1-cyclohexyl-1H-tetrazol-5-yl)(4-nitrophenyl)methyl)aniline (4s)

Based on *GP*, 100 mg 4-nitrobenzaldehyde (0.66 mmol), 0.061 cm³ aniline (0.66 mmol), 0.082 cm³ cyclohexyl isocyanide (0.66 mmol), and 0.086 cm³ TMS-azide (0.66 mmol) were reacted together to afford 217 mg (86%) as a yellow semisolid. $R_f = 0.48$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, *J* = 8.7 Hz, 2H), 7.67 – 7.64 (m, 2H), 7.20 (t, *J* = 7.9 Hz, 2H), 6.83 (t, *J* = 7.4 Hz, 1H), 6.68 (d, *J* = 7.8 Hz, 2H), 6.01 (d, *J* = 7.2 Hz, 1H), 5.03 (d, *J* = 7.0 Hz, 1H), 4.3 – 4.28 (m, 1H), 2.08 – 2.01 (m, 1H), 1.95 – 1.89 (m, 3H), 1.77 (bs, 1H), 1.64 (d, *J* = 12.3 Hz, 1H), 1.42 – 1.29 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 153.65, 148.18, 145.03, 145.00, 129.73, 128.45, 124.52, 120.07, 114.22, 58.82, 53.01, 33.09, 33.02, 25.41, 25.39, 24.76; FT-IR (ATR) v_{max} /cm⁻¹ 3411.8, 3059.2, 2934.8, 1599.5, 1519.6, 1345.0; HRMS (ESI+): *m/z* calcd. for C₂₀H₂₂N₆O₂⁺ 379.1877, found 379.1866.

¹H NMR spectra of the compound **4s**

¹³C NMR spectra of the compound **4s**

3-bromo-N-((1-cyclohexyl-1H-tetrazol-5-yl)(4-nitrophenyl)methyl)aniline (4t)

Based on *GP*, 100 mg 4-nitrobenzaldehyde (0.66 mmol), 0.070 cm³ 3-bromoaniline (0.71 mmol), 0.082 cm³ cyclohexyl isocyanide (0.71 mmol), and 0.086 cm³ TMS-azide (0.71 mmol) were reacted together to afford 181 mg (55%) as a reddish solid. Melting range 103-106°C, $R_f = 0.45$ (Hexane-AcOEt = 7/3 V/V), ¹H **NMR** (500 MHz, CDCl₃) δ 8.25 – 8.21 (m, 2H), 7.65 – 7.60 (m, 2H), 7.01 (t, *J* = 8.0 Hz, 1H), 6.92 – 6.89 (m, 1H), 6.80 (t, *J* = 2.0 Hz, 1H), 6.58 (dd, *J* = 8.0, 2.0 Hz, 1H), 5.93 (d, *J* = 7.2 Hz, 1H), 5.31 (d, *J* = 7.2, 1H), 4.30 - 4.23 (m, 1H), 2.06 - 2.01 (m, 1H), 1.95 (d, *J* = 11.6 Hz, 2H), 1.91 – 1.86 (m, 2H), 1.79 – 1.70 (m, 2H), 1.58 (d, *J* = 11.1 Hz, 1H), 1.33 – 1.25 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 153.36, 148.29, 146.31, 144.43, 131.01, 128.46, 124.63, 123.54, 122.78, 116.70, 112.85, 58.88, 52.62, 33.08, 33.04, 25.39, 25.36, 24.73; FT-IR (ATR) v_{max}/cm^{-1} 3305.1, 3079.8, 2935.3, 2857.8, 1593.3, 1345.0; HRMS (ESI+): *m/z* calcd. for C₂₀H₂₁BrN₆O₂⁺ 457.0982, found 457.0965.

¹H NMR spectra of the compound **4t**

¹³C NMR spectra of the compound **4t**

N-((1-(tert-butyl)-1H-tetrazol-5-yl)(pyridin-2-yl)methyl)aniline (4u)

Based on *GP*, 100 mg 2-pyridinecarboxaldehyde (0.93 mmol), 0.085 cm³ aniline (0.93 mmol), 0.105 cm³ ter. butyl isocyanide (0.85 mmol), and 0.122 cm³ TMS-azide (0.93 mmol) were reacted together to afford 266 mg (92%) as a white solid. melting range 147-149°C, $R_f = 0.47$ (Hexane-AcOEt = 7/3 V/V), ¹H NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 7.70 (d, *J* = 7.3 Hz, 1H), 7.60 (d, *J* = 7.7 Hz, 1H), 7.24 (s, 1H), 7.19 – 7.14 (m, 2H), 6.77 – 6.71 (m, 3H), 6.41 (s, 1H), 5.43 (s, 1H), 1.75 (s,9H); ¹³C NMR (126 MHz, CDCl₃) δ 157.64, 154.95, 148.32, 145.62, 138.14, 129.64, 123.55, 122.37, 119.26, 113.98, 62.62, 55.40, 30.21; FT-IR (ATR) v_{max}/cm^{-1} 3273.6, 3054.6, 2958.2, 1604.4, 1254.1; HRMS (ESI+): *m/z* calcd. for C₁₇H₂₀N₆⁺ 309.1822, found 309.1810.

¹H NMR spectra of the compound **4u**

¹³C NMR spectra of the compound **4u**

N-((1-(4-methoxyphenyl)-1H-tetrazol-5-yl)(pyridin-2-yl)methyl)aniline (4v)

Based on *GP*, 100 mg 2-pyridinecarboxaldehyde (0.93 mmol), 0.085 cm³ aniline (0.93 mmol), 124 mg 4methoxyphenyl isocyanide (0.85 mmol), and 0.122 cm³ TMS-azide (0.93 mmol) were reacted together to afford 288 mg (86%) as a light yellow solid. Melting range 182-183°C, $R_f = 0.50$ (Hexane-AcOEt = 7/3 V/V); ¹H NMR (500 MHz, CDCl₃) δ 8.52 (d, *J* = 4.5 Hz, 1H), 7.89 – 7.82 (m, 1H), 7.70 (d, *J* = 7.0 Hz, 1H), 7.38 (d, *J* = 4.9 Hz, 1H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.13 – 7.09 (m, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.76 – 6.72 (m, 1H), 6.59 (d, *J* = 8.0 Hz, 2H), 6.36 (s, 1H), 3.85 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.25, 155.54, 155.22, 147.16, 144.89, 129.59, 127.28, 126.34, 125.19, 124.86, 124.17, 119.37, 114.67, 113.86, 55.79, 52.76; FT-IR (ATR) v_{max}/cm^{-1} 3273.6, 3054.6, 2968.4, 1604.4, 1254.1; HRMS (ESI+): *m/z* calcd. for C₂₀H₁₈N₆O⁺ 359.1614, found 359.1606.

 ^1H NMR spectra of the compound 4v

 $^{\rm 13}{\rm C}$ NMR spectra of the compound ${\rm 4v}$

GC-MS experiment

Column SGE 5-MS 30m x 0.25mm x 0.25µm Horno 60-260°C, 30°C/min, TIC 60-400 m/z, injector 250°C, flow of He 1ml/min Sample 1-5µl vapours, temperature 23°C, split 1:25

X-ray data of the compound 4q

Table 1 Crystal data and structure refinement for 4q.

Identification code	4q
Empirical formula	$C_{22}H_{21}N_5$
Formula weight	355.44
Temperature/K	293
Crystal system	Triclinic
Space group	P-1
a/Å	9.2637(4)
b/Å	10.3529(4)
c/Å	10.4849(5)
α/°	86.787(4)
β/°	75.671(4)
γ/°	82.064(4)
Volume/ų	964.70(8)
Z	2
ρ _{calc} g/cm ³	1.224
µ/mm⁻¹	0.075
F(000)	376.0
Crystal size/mm ³	0.54 × 0.223 × 0.207
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	6.778 to 59.126
Index ranges	12≤ h ≤ 7, 13≤ k ≤ 13, 14≤ l ≤ 11
Reflections collected	8194
Independent reflections	4432 [R _{int} = 0.0191, R _{sigma} = 0.0282]
Data/restraints/parameters	4432/0/251
Goodness-of-fit on F ²	1.033
Final R indexes [I>=2σ (I)]	$R_1 = 0.0533$, $wR_2 = 0.1293$
Final R indexes [all data]	$R_1 = 0.0699$, w $R_2 = 0.1424$
Largest diff. peak/hole / e Å ⁻³	0.15/0.17

Atom	X	Ŷ	Ζ	U(eq)
N(0AA)	-104.7(15)	8110.9(13)	4050.9(15)	61.5(4)
N(1)	1790.2(14)	6757.9(12)	3093.2(13)	50.3(3)
N(2)	647.3(16)	6636.5(14)	2528.5(15)	63.0(4)
N(3)	-478.0(17)	7448.9(15)	3110.0(17)	68.8(4)
N(4)	1369.3(17)	8845.9(13)	5970.3(13)	62.0(4)
C(0AA)	1302.9(17)	7670.1(14)	4023.9(15)	48.0(4)
C(3)	3426.9(17)	8922.0(15)	4016.6(14)	48.8(4)
C(5)	633.8(17)	8285.2(16)	7143.1(15)	50.6(4)
C(6)	3258.4(17)	6035.7(15)	2625.3(16)	52.4(4)
C(8)	2257.4(17)	8112.5(15)	4849.1(14)	50.5(4)
C(10)	4939.8(18)	8467.9(18)	3766.9(17)	61.5(4)
C(11)	21(2)	9086.3(18)	8214.8(16)	65.3(5)
C(12)	2980(2)	10128.8(16)	3500.2(16)	55.7(4)
C(13)	4038(2)	10861.6(18)	2749.2(18)	66.7(5)
C(15)	471(2)	6965.9(17)	7304.8(17)	63.7(5)
C(16)	3647.8(19)	4892.8(16)	3299.0(18)	59.8(4)
C(17)	4205(2)	6526.6(19)	1504.4(17)	66.7(5)
C(18)	5088(2)	4252(2)	2839(2)	79.9(6)
C(19)	-813(2)	7262(2)	9570.7(19)	79.4(6)
C(20)	5993(2)	9204(2)	3015(2)	73.4(5)
C(21)	-246(2)	6467(2)	8518.8(19)	73.3(5)
C(22)	5545(2)	10400(2)	2511(2)	73.5(5)
C(23)	2569(2)	4355.3(19)	4455(2)	81.4(6)
C(24)	-697(2)	8577(2)	9407.6(18)	80.9(6)
C(25)	5621(2)	5824(3)	1087(2)	88.5(7)
C(26)	6062(2)	4721(3)	1751(3)	93.6(8)
C(27)	3718(3)	7740(2)	782(2)	92.7(7)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4q**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **4q**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$

Atom	^U 11	^U 22	^U 33	^U 23	^U 13	^U 12
N(0AA)	56.1(8)	55.6(8)	69.0(9)	-3.2(7)	-12.6(7)	1.8(6)
N(1)	51.1(7)	46.4(7)	52.2(7)	-4.3(6)	-12.9(6)	-0.4(5)
N(2)	62.4(9)	57.4(8)	73.3(10)	-4.3(7)	-25.9(7)	-3.7(7)
N(3)	59.3(9)	62.8(9)	86.5(11)	-3.1(8)	-25.3(8)	-0.4(7)
N(4)	82.6(10)	49.1(7)	44.8(7)	-3.7(6)	1.5(7)	-5.2(7)

C(0AA)	51.0(8)	40.4(7)	46.9(8)	1.8(6)	-5.0(6)	-0.8(6)
C(3)	50.4(8)	56.1(9)	38.7(7)	-3.2(7)	-10.5(6)	-2.9(7)
C(5)	50.0(8)	57.3(9)	43.8(8)	0.8(7)	-10.1(6)	-7.5(7)
C(6)	52.0(9)	52.6(9)	51.2(8)	-13.4(7)	-9.9(7)	-1.9(7)
C(8)	56.3(9)	48.2(8)	43.0(8)	-2.1(6)	-8.0(7)	0.5(7)
C(10)	54.5(10)	70.3(11)	57.5(10)	4.2(8)	-16.8(8)	3.1(8)
C(11)	83.1(12)	66.5(11)	46.9(9)	-8.2(8)	-8.8(8)	-21.6(9)
C(12)	51.4(9)	57.7(10)	54.1(9)	0.4(8)	-8.7(7)	-1.8(7)
C(13)	73.7(12)	59.2(10)	64.8(11)	6.8(9)	-13.7(9)	-9.3(9)
C(15)	72.5(11)	58.7(10)	54.7(10)	-4.7(8)	-6.4(8)	-6.3(8)
C(16)	59.9(10)	53.6(9)	65.7(10)	-11.6(8)	-18.9(8)	3.6(7)
C(17)	71.8(12)	72.5(12)	52.8(10)	-15.3(9)	-3.1(8)	-14.9(9)
C(18)	68.8(12)	76.4(13)	94.9(15)	-23.2(11)	-30.1(12)	16.2(10)
C(19)	92.6(15)	97.7(15)	49.7(10)	5.4(10)	-5.7(9)	-42.6(12)
C(20)	46.1(9)	96.0(15)	73.9(12)	2.6(11)	-10.1(8)	-5.2(9)
C(21)	85.4(13)	67.1(11)	66.2(11)	7.3(9)	-10.3(10)	-24(1)
C(22)	62.3(11)	84.2(13)	71.6(12)	8.2(10)	-7.6(9)	-21.5(10)
C(23)	91.7(15)	58.3(11)	84.7(14)	10.2(10)	-13.2(11)	2.7(10)
C(24)	99.2(15)	93.9(15)	47.5(10)	-14.6(10)	0.2(10)	-33.6(12)
C(25)	67.3(13)	119.4(19)	71.5(13)	-32.0(13)	9.4(10)	-22.8(13)
C(26)	53.8(11)	118(2)	105.4(18)	-46.3(16)	-15.2(12)	12.2(12)
C(27)	131(2)	86.6(15)	52.4(11)	3.4(10)	-0.9(12)	-26.7(14)

Table 4 Bond Lengths for 4q

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N(0AA)	N(3)	1.368(2)	C(6)	C(17)	1.398(2)
N(0AA)	C(0AA)	1.3146(19)	C(10)	C(20)	1.383(3)
N(1)	N(2)	1.3575(18)	C(11)	C(24)	1.377(2)
N(1)	C(0AA)	1.3474(19)	C(12)	C(13)	1.383(2)
N(1)	C(6)	1.4421(19)	C(13)	C(22)	1.377(3)
N(2)	N(3)	1.2909(19)	C(15)	C(21)	1.390(2)
N(4)	C(5)	1.388(2)	C(16)	C(18)	1.387(2)
N(4)	C(8)	1.4437(19)	C(16)	C(23)	1.502(3)
C(0AA)	C(8)	1.508(2)	C(17)	C(25)	1.389(3)
C(3)	C(8)	1.529(2)	C(17)	C(27)	1.504(3)
C(3)	C(10)	1.380(2)	C(18)	C(26)	1.379(3)
C(3)	C(12)	1.385(2)	C(19)	C(21)	1.366(3)
C(5)	C(11)	1.390(2)	C(19)	C(24)	1.378(3)
C(5)	C(15)	1.391(2)	C(20)	C(22)	1.370(3)
C(6)	C(16)	1.394(2)	C(25)	C(26)	1.371(3)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(0AA)	N(0AA)	N(3)	106.18(13)	C(0AA)	C(8)	C(3)	110.74(12)
N(2)	N(1)	C(6)	121.14(13)	C(3)	C(10)	C(20)	120.65(16)
C(0AA)	N(1)	N(2)	108.37(12)	C(24)	C(11)	C(5)	120.64(17)
C(0AA)	N(1)	C(6)	130.37(13)	C(13)	C(12)	C(3)	120.25(16)
N(3)	N(2)	N(1)	106.34(14)	C(22)	C(13)	C(12)	120.31(17)
N(2)	N(3)	N(0AA)	110.77(14)	C(21)	C(15)	C(5)	120.46(17)
C(5)	N(4)	C(8)	124.15(13)	C(6)	C(16)	C(23)	122.37(15)
N(0AA)	C(OAA)	N(1)	108.33(14)	C(18)	C(16)	C(6)	116.75(18)
N(0AA)	C(0AA)	C(8)	127.11(14)	C(18)	C(16)	C(23)	120.87(17)
N(1)	C(0AA)	C(8)	124.53(13)	C(6)	C(17)	C(27)	122.08(17)
C(10)	C(3)	C(8)	120.86(14)	C(25)	C(17)	C(6)	116.20(19)
C(10)	C(3)	C(12)	118.87(15)	C(25)	C(17)	C(27)	121.71(19)
C(12)	C(3)	C(8)	120.26(14)	C(26)	C(18)	C(16)	120.9(2)
N(4)	C(5)	C(11)	118.23(15)	C(21)	C(19)	C(24)	119.17(17)
N(4)	C(5)	C(15)	123.65(15)	C(22)	C(20)	C(10)	120.23(17)
C(11)	C(5)	C(15)	118.11(15)	C(19)	C(21)	C(15)	120.69(18)
C(16)	C(6)	N(1)	118.72(14)	C(20)	C(22)	C(13)	119.68(17)
C(16)	C(6)	C(17)	123.90(15)	C(11)	C(24)	C(19)	120.87(18)
C(17)	C(6)	N(1)	117.37(15)	C(26)	C(25)	C(17)	121.5(2)
N(4)	C(8)	C(0AA)	112.29(13)	C(25)	C(26)	C(18)	120.61(19)
N(4)	C(8)	C(3)	109.90(13)				

Table 5 Bond Angles for 4q

Atom	X	У	Ζ	U(eq)
H(4)	1291	9683	5908	74
H(8)	2794	7334	5179	61
H(10)	5254	7659	4107	74
H(11)	97	9975	8125	78
H(12)	1940(20)	10445(16)	3661(17)	64(5)
H(13)	3730	11670	2403	80
H(15)	845	6414	6595	76
H(18)	5400	3495	3271	96
H(19)	-1271	6921	10387	95
H(20)	7010	8887	2851	88
H(21)	-340	5582	8616	88
H(22)	6255	10897	2011	88
H(23A)	2764	4609	5257	122
H(23B)	2696	3421	4420	122
H(23C)	1558	4692	4427	122
H(24)	-1109	9128	10113	97
H(25)	6285	6109	340	106
H(26)	7027	4284	1465	112
H(27A)	2839	7623	494	139
H(27B)	4512	7904	32	139
H(27C)	3492	8467	1359	139

 Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 4q.

ORTEP diagram of the compound 4q

