Synthesis of (E)-β-iodo vinylsulfones via iodine-promoted
iodosulfonylation of alkynes with sodium sulfinates in an aqueous
medium at room temperature

Yadong Sun,* Ablimit Abdukader, Dong Lu, Haiyan Zhang and Chenjiang Liu*

The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Physics and Chemistry Detecting Center, Xinjiang University, Urumqi 830046, China.

E-mail: pxylcj@126.com
E-mail: syd19791016@163.com

Supporting Information

List of Contents

A. General method...S2

B. General procedure for the synthesis of products...S2

C. Control experiments for the study of mechanism...S2

D. Single-crystal X-ray analysis of 3aa..S4

E. Analytical data for 3aa-3la, 4, 5 and 6...S5

F. NMR Spectra...S14
A. General method

Melting points were measured with a melting point instrument and were uncorrected. 1H NMR and 13C NMR spectra were recorded on Bruker Avance (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. GC-MS was obtained using electron ionization (EI). High-resolution mass spectra were obtained with a LCMS-IT-TOF mass spectrometer. Single-crystal X-ray analysis was obtained using Bruker APEX2 Smart CCD. TLC was performed by using commercially prepared 100–400 mesh silica gel plates (GF254) and visualization was effected at 254 nm. All reagents and solvents were purchased from commercial sources (Adamas-beta, TCI, Alfa Aesar and Ark) and used without further purification.

B. General procedure for the synthesis of products

\[
R^1\equiv \equiv R^2 + R^3\text{-SO}_2\text{Na} \xrightarrow{I_2, H_2O, rt} \quad 1 \quad 2
\]

A mixture of sodium sulfinates (0.60 mmol), alkyne (0.30 mmol), and iodine (0.45 mmol) in water (2.0 mL) was placed in a test tube (25 mL) equipped with a magnetic stirring bar. The reaction mixture was stirred at room temperature for 2h. After the reaction was completed, the mixture was quenched by the addition of satd aq Na$_2$S$_2$O$_3$ (5 mL). Further stirring was followed by extraction with ethyl acetate (2 × 15 mL). The organic layer was dried with anhydrous MgSO$_4$, concentrated in vacuo and purified by flash silica gel chromatography using petroleum ether/ethyl acetate 20:1 to give the desired products.

C. Control experiments for the study of mechanism

\[
\text{Ph}\equiv \equiv + \quad \begin{array}{c} \text{Ph} \\ 1a \end{array} \quad \xrightarrow{\text{Standard Conditions}} \quad \begin{array}{c} \text{Ph} \\ 2a \end{array} \quad \xrightarrow{\text{BHT}} \quad \begin{array}{c} \text{Ph} \\ 3aa, 86\% \end{array}
\]

\[
\text{Ph}\equiv \equiv + \quad \begin{array}{c} \text{Ph} \\ 1a \end{array} \quad \xrightarrow{\text{Standard Conditions}} \quad \begin{array}{c} \text{Ph} \\ 2a \end{array} \quad \xrightarrow{\text{TEMPO}} \quad \begin{array}{c} \text{Ph} \\ 3aa, \text{not detected} \end{array}
\]
A mixture of 2a (0.60 mmol), 1a (0.30 mmol), iodine (0.45 mmol) and BHT (0.30 mmol) in water (2.0 mL) was placed in a test tube (25 mL) equipped with a magnetic stirring bar. The reaction mixture was stirred at room temperature for 2h. After the reaction was completed, the mixture was quenched by the addition of satd aq Na$_2$S$_2$O$_3$ (5 mL). Further stirring was followed by extraction with ethyl acetate (2×15 mL). The organic layer was dried with anhydrous MgSO$_4$, concentrated in vacuo and purified by flash silica gel chromatography using petroleum ether/ethyl acetate 20:1 to give 3aa in 86% yield.

A mixture of 2a (0.60 mmol), 1a (0.30 mmol), iodine (0.45 mmol) and TEMPO (0.30 mmol) in water (2.0 mL) was placed in a test tube (25 mL) equipped with a magnetic stirring bar. The reaction mixture was stirred at room temperature for 2h. After the reaction was completed, the mixture was quenched by the addition of satd aq Na$_2$S$_2$O$_3$ (5 mL). Further stirring was followed by extraction with ethyl acetate (2×15 mL). The organic layer was dried with anhydrous MgSO$_4$, concentrated in vacuo and the crude product was detected by GC-MS.
D. Single-crystal X-ray analysis of 3aa

Datablock: 1

<table>
<thead>
<tr>
<th>Bond precision:</th>
<th>C-C - 0.0132 Å</th>
<th>Wavelength-0.71073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell:</td>
<td>a=7.7369(8)</td>
<td>b=10.2035(11)</td>
</tr>
<tr>
<td></td>
<td>alpha=102.425(4)</td>
<td>beta=90.356(3)</td>
</tr>
<tr>
<td>Temperature:</td>
<td>296 K</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculated</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>1504.2(3)</td>
</tr>
<tr>
<td>Space group</td>
<td>D-1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 1</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C15 H13 I C2 S</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C15 H13 I C2 S</td>
</tr>
<tr>
<td>Mr</td>
<td>384.21</td>
</tr>
<tr>
<td>D, g cm^{-3}</td>
<td>1.697</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Mu (mm^{-1})</td>
<td>2.262</td>
</tr>
<tr>
<td>F000</td>
<td>752.0</td>
</tr>
<tr>
<td>F000’</td>
<td>750.87</td>
</tr>
<tr>
<td>h,k,l_{max}</td>
<td>9.12,23</td>
</tr>
<tr>
<td>Nref</td>
<td>5223</td>
</tr>
<tr>
<td>Tmin,Tmax</td>
<td>0.614,0.666</td>
</tr>
<tr>
<td>Tmin’</td>
<td>0.602</td>
</tr>
</tbody>
</table>

Correction method= # Reported T Limits: Tmin=0.636 Tmax=0.686
AbsCorr = MULTI-SCAN

Data completeness= 0.981
Theta(max)= 25.050
R(reflections)= 0.0836 (4279) wR2(reflections)= 0.2187 (5220)

S = 1.075

Npar= 297

![Diagram of molecular structure](image-url)
E. Analytical data for 3aa-3la, 4, 5 and 6.

![Chemical structure image]

(E)-1-((2-iodo-2-phenylvinyl)sulfonyl)-4-methylbenzene (3aa).\(^1\) white solid (99.1 mg, 86%); mp 80–81 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.45 (d, \(J = 8.3\) Hz, 2H), 7.36 (s, 1H), 7.32 – 7.25 (m, 3H), 7.23 (dt, \(J = 3.7, 2.1\) Hz, 2H), 7.18 (d, \(J = 8.6\) Hz, 2H), 2.39 (s, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 144.5, 141.2, 139.6, 137.2, 129.7, 129.6, 127.8, 127.8, 127.6, 114.1, 21.5.

![Chemical structure image]

(E)-1-ethyl-4-(1-iodo-2-tosylvinyl)benzene (3ab). white solid (107.6 mg, 87%); mp 91–92 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.45 (d, \(J = 8.3\) Hz, 2H), 7.34 (s, 2H), 7.18 – 7.12 (m, 4H), 7.09 (d, \(J = 8.5\) Hz, 2H), 2.63 (q, \(J = 7.6\) Hz, 2H), 2.36 (s, 3H), 1.24 (t, \(J = 7.6\) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 146.1, 144.2, 140.6, 137.0, 136.7, 129.3, 127.7, 127.6, 127.1, 114.6, 28.5, 21.4, 15.1; ESI-HRMS calcld for C\(_{17}\)H\(_{17}\)IO\(_2\)S (M + H\(^+\)) 413.0067; found 413.0059.

![Chemical structure image]

(E)-1-butyl-4-(1-iodo-2-tosylvinyl)benzene (3ac). Yellow liquid (116.2 mg, 88%); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.45 (d, \(J = 10.4\) Hz, 2H), 7.34 (s, 1H), 7.15 (d, \(J = 8.3\) Hz, 4H), 7.07 (d, \(J = 8.1\) Hz, 2H), 2.60(t, \(J = 7.7\) Hz, 2H), 2.37 (s, 3H), 1.64 – 1.56 (m, 2H), 1.43 – 1.33 (m, 2H), 0.96 (t, \(J = 7.3\) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 145.0, 144.3, 140.8, 137.2, 136.7, 129.4, 127.7, 127.7, 127.6, 114.8, 35.4, 33.3, 22.2, 21.5, 13.9; ESI-HRMS calcld for C\(_{19}\)H\(_{23}\)IO\(_2\)S (M + H\(^+\)) 441.0380; found 441.0385.
(E)-1-fluoro-4-(1-iodo-2-tosylvinyl)benzene (3ad).¹ White solid (90.5 mg, 75%); mp 91–92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.2 Hz, 2H), 7.35 (s, 1H), 7.28 – 7.20 (m, 4H), 6.98 (t, J = 8.6 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1 (d, J = 251.4 Hz), 144.7, 141.6, 137.1, 135.6 (d, J = 3.5 Hz), 129.9 (d, J = 8.7 Hz), 129.7, 127.7, 115.0 (d, J = 22.1 Hz), 112.5, 21.6.

(E)-1-chloro-4-(1-iodo-2-tosylvinyl)benzene (3ae).¹ White solid (96.7 mg, 77%); mp 146–147 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.3 Hz, 2H), 7.34 (s, 1H), 7.29 – 7.22 (m, 4H), 7.21 – 7.16 (m, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 141.7, 138.0, 137.1, 135.8, 129.7, 129.0, 128.1, 127.8, 112.0, 21.6.

(E)-1-bromo-4-(1-iodo-2-tosylvinyl)benzene (3af).² White solid (109.8 mg, 79%); mp 156–157 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.45 – 7.39 (m, 2H), 7.34 (s, 1H), 7.23 (d, J = 7.9 Hz, 2H), 7.14 – 7.09 (m, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 141.7, 138.5, 137.0, 131.1, 129.7, 129.2, 127.8, 124.1, 111.9, 21.6.
(E)-1-fluoro-2-(1-iodo-2-tosylviny]benzene (3ag). white solid (94.1 mg, 78%); mp 120–121 °C; 1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8.4 Hz, 2H), 7.40 (s, 1H), 7.36 – 7.30 (m, 1H), 7.25 – 7.20 (m, 3H), 7.16 – 7.12 (m, 1H), 6.99 – 6.94 (m, 1H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 157.1 (d, J = 250.8 Hz), 144.8, 142.8, 136.6, 131.5 (d, J = 8.2 Hz), 129.7, 129.1 (d, J = 1.7 Hz), 127.8, 127.4 (d, J = 15.3 Hz), 123.7 (d, J = 3.6 Hz), 115.6 (d, J = 20.7 Hz), 104.4, 21.5; ESI-HRMS calcd for C15H12FIO2S (M + Na)+ 424.9479; found 424.9470.

(E)-3-(1-iodo-2-tosylviny]phenol (3ah). white solid (104.5 mg, 87%); mp 132–133 °C; 1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 8.3 Hz, 2H), 7.34 (s, 2H), 7.20 (d, J = 8.4 Hz, 2H), 7.11 (t, J = 7.9 Hz, 1H), 6.80 – 6.71 (m, 2H), 6.70 – 6.65 (m, 1H), 6.11 (s, 1H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 155.1, 144.8, 140.8, 140.5, 136.7, 129.7, 129.2, 127.8, 119.7, 117.1, 114.5, 113.9, 21.6; ESI-HRMS calcd for C15H13IO3S (M + Na)+ 422.9522; found 422.9516.

(E)-1-((2-iodo-2-(4-methoxyphenyl)vinyl)sulfonyl)-4-methylbenzene (3ai).2 Yellow liquid (113.1 mg, 91%); 1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 8.3 Hz, 2H), 7.34 (s, 2H), 7.20 (d, J = 8.4 Hz, 2H), 7.11 (t, J = 7.9 Hz, 1H), 6.80 – 6.71 (m, 2H), 6.70 – 6.65 (m, 1H), 6.11 (s, 1H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 160.7, 144.4, 140.1, 137.3, 131.7, 129.8, 129.5, 127.7, 114.8, 113.1, 55.3, 21.5;

(E)-1-ethoxy-4-(1-iodo-2-tosylviny]benzene (3aj): Yellow liquid (119.5 mg, 93%); 1H NMR (400 MHz, CDCl3) δ 7.51 – 7.45 (m, 2H), 7.28 (s, 1H), 7.25 – 7.21 (m, 2H), 7.18 (dd, J = 8.4, 0.5 Hz, 2H), 6.79 – 6.73 (m, 2H), 4.02 (q, J = 7.0 Hz, 2H), 2.37 (s, 3H), 1.41 (t, J = 7.0 Hz, 3H); 13C
NMR (100 MHz, CDCl₃) δ 160.0, 144.3, 140.0, 137.2, 131.4, 129.8, 129.4, 127.6, 115.0, 113.4, 63.4, 21.4, 14.5; ESI-HRMS calcd for C₁₇H₁₇IO₃S (M + Na)⁺ 450.9835; found 450.9828.

(E)-2-(1-iodo-2-tosylvinyl)thiophene (3ak). Yellow solid (106.5 mg, 91%); mp 95–96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.3 Hz, 2H), 7.53 (dd, J = 3.7, 1.2 Hz, 1H), 7.49 (dd, J = 5.1, 1.2 Hz, 1H), 7.31 (s, 1H), 7.24 – 7.22 (m, 1H), 7.21 (d, J = 0.7 Hz, 1H), 7.00 (dd, J = 5.1, 3.7 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 141.0, 140.8, 136.9, 131.3, 130.0, 129.6, 127.6, 127.3, 103.4, 21.5.

(E)-3-(1-iodo-2-tosylvinyl)pyridine (3al). Yellow solid (94.8 mg, 82%); mp 140–141 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (dd, J = 4.9, 1.5 Hz, 1H), 8.46 (d, J = 2.2 Hz, 1H), 7.66 – 7.62 (m, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.44 (s, 1H), 7.31 – 7.26 (m, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 147.3, 145.1, 142.8, 136.9, 136.1, 135.4, 130.0, 127.8, 122.7, 108.7, 21.6.

(E)-1-((2-cyclopropyl-2-iodovinyl)sulfonyl)-4-methylbenzene (3am). White solid (88.8 mg, 85%); mp 121–122 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.75 (m, 2H), 7.35 – 7.33 (m, 2H), 7.03 (d, J = 2.3 Hz, 1H), 2.46 – 2.39 (m, 4H), 0.94 – 0.80 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 138.2, 137.7, 133.4, 129.9, 127.2, 21.6, 17.2, 12.0; ESI-HRMS calcd for C₁₂H₁₃IO₂S (M + Na)⁺ 370.9573; found 370.9577.

S8
(E)-1-((2-iodohex-1-en-1-yl)sulfonyl)-4-methylbenzene (3an). Yellow liquid (85.2 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 2H), 7.33 (dd, J = 8.6, 0.6 Hz, 2H), 6.97 (s, 1H), 3.04 – 2.97 (m, 2H), 2.43 (s, 3H), 1.55 – 1.44 (m, 2H), 1.41 – 1.31 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 138.8, 138.0, 130.0, 127.4, 125.4, 39.7, 31.9, 21.6, 21.6, 13.82.

(E)-1-(((1-iodo-1-phenylprop-1-en-2-yl)sulfonyl)-4-methylbenzene (3ao). White solid (76.5 mg, 64%); mp 129–130 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.3 Hz, 2H), 7.25 – 7.20 (m, 3H), 7.16 (d, J = 7.9 Hz, 2H), 7.13 – 7.07 (m, 2H), 2.51 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 143.8, 142.9, 137.2, 129.4, 128.6, 127.7, 127.6, 127.5, 115.7, 27.0, 21.5.

(E)-ethyl 3-iodo-3-phenyl-2-tosylacrylate (3ap): Yellow liquid (69.8 mg, 51%); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.1 Hz, 2H), 7.29 (m, 1H), 7.24 (m, 2H), 7.13 (d, J = 8.4 Hz, 2H), 7.08 (m, 2H), 4.44 (q, J = 7.2 Hz, 2H), 2.39 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 146.4, 144.8, 139.5, 137.0, 129.5, 129.3, 128.2, 127.7, 127.3, 114.0, 63.2, 21.6, 13.9; ESI-HRMS calcd for C₁₉H₁₇IO₄S (M + Na)⁺ 478.9784; found 478.9775.

S9
(E)-(1-iodo-2-(phenylsulfonyl)vinyl)benzene (3ba).² white solid (95.5 mg, 86%); mp 66–67 °C; H NMR (400 MHz, CDCl₃) δ 7.58 – 7.49 (m, 3H), 7.39 (s, 1H), 7.39 – 7.33 (m, 2H), 7.31 – 7.23 (m, 3H), 7.22 – 7.19 (m, 2H); C NMR (100 MHz, CDCl₃) δ 140.8, 139.9, 139.3, 133.3, 129.6, 128.8, 127.7, 127.5, 127.4, 114.6.

(E)-1-((2-iodo-2-phenylvinyl)sulfonyl)-2-methylbenzene (3ca). white solid (100.3 mg, 87%); mp 72–73 °C; H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.37 – 7.33 (m, 1H), 7.25 – 7.12 (m, 2H), 7.06 – 7.00 (m, 1H), 2.60 (s, 3H); C NMR (100 MHz, CDCl₃) δ 140.9, 139.1, 138.1, 137.4, 133.2, 132.0, 129.6, 129.2, 127.7, 127.4, 126.0, 114.2, 20.3; ESI-HRMS calcd for C₁₅H₁₁O₂S (M + H)⁺ 384.9754; found 384.9751.

(E)-1-((2-iodo-2-phenylvinyl)sulfonyl)-4-methoxybenzene (3da). white solid (102.1 mg, 85%); mp 111–112 °C; H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 11.9 Hz, 2H), 7.37 (s, 1H), 7.32 – 7.20 (m, 5H), 6.85 – 6.79 (m, 2H), 3.81 (s, 3H); C NMR (100 MHz, CDCl₃) δ 163.4, 141.4, 139.5, 131.4, 129.8, 129.5, 127.7, 127.5, 114.1, 113.5, 55.5.

(E)-1-fluoro-3-((2-iodo-2-phenylvinyl)sulfonyl)benzene (3ea): white solid (96.7 mg, 83%); mp 92–93 °C; H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H), 7.38 – 7.37 (m, 2H), 7.35 – 7.29 (m, 2H), 7.28 – 7.27 (m, 1H), 7.26 – 7.21 (m, 1H), 7.19 (m, 3H); C NMR (100 MHz, CDCl₃) δ 162.0 (d, J = 252.3 Hz), 142.0 (d, J = 6.6 Hz), 140.5, 139.2, 130.7 (d, J = 7.6 Hz), 129.9, 127.9, 127.4, 123.5 (d, J = 3.3 Hz), 120.6 (d, J = 21.2 Hz), 115.5, 115.1 (d, J = 24.5 Hz); ESI-HRMS calcd for C₁₄H₁₀FIO₂S (M + Na)⁺ 410.9322; found 410.9328.
(E)-1-chloro-4-((2-iodo-2-phenylvinyl)sulfonyl)benzene (3fa): white solid (99.5 mg, 82%); mp 102–103 °C; 1H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.6 Hz, 2H), 7.39 (s, 1H), 7.34 – 7.23 (m, 5H), 7.21 – 7.14 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 140.7, 139.9, 139.2, 138.3, 129.7, 129.0, 129.0, 127.8, 127.4, 115.1.

(E)-1-bromo-3-((2-iodo-2-phenylvinyl)sulfonyl)benzene (3ga): white solid (114.5 mg, 85%); mp 59–60 °C; 1H NMR (400 MHz, CDCl3) δ 7.65 – 7.61 (m, 1H), 7.55 (t, J = 1.7 Hz, 1H), 7.52 – 7.49 (m, 1H), 7.40 (s, 1H), 7.36 – 7.31 (m, 1H), 7.31 – 7.24 (m, 3H), 7.19 – 7.15 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 141.8, 140.7, 139.1, 136.3, 130.7, 130.3, 130.0, 127.9, 127.4, 126.2, 122.7, 115.6; ESI-HRMS calcd for C14H10BrIO2S (M + Na)+ 470.8522; found 470.8511.

(E)-1-chloro-2-((2-iodo-2-phenylvinyl)sulfonyl)benzene (3ha): white solid (102.0 mg, 84%); mp 100–101 °C; 1H NMR (400 MHz, CDCl3) δ 7.57 (s, 1H), 7.48 – 7.44 (m, 1H), 7.42 – 7.37 (m, 2H), 7.22 – 7.16 (m, 1H), 7.15 – 7.07 (m, 5H); 13C NMR (100 MHz, CDCl3) δ 140.3, 139.2, 137.9, 134.2, 132.3, 131.3, 130.7, 129.7, 127.7, 127.3, 126.8, 114.8; ESI-HRMS calcd for C14H10ClIO2S (M + Na)+ 426.9027; found 426.9021.

(E)-1-chloro-3-((2-iodo-2-phenylvinyl)sulfonyl)benzene (3ia): white solid (98.3 mg, 81%); mp 63–64 °C; 1H NMR (400 MHz, CDCl3) δ 7.49 – 7.43 (m, 2H), 7.41 – 7.40 (m, 2H), 7.35 – 7.25 (m,
4H), 7.20 – 7.15 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 141.6, 140.7, 139.1, 134.9, 133.4, 130.1, 130.0, 127.9, 127.9, 127.3, 125.7, 115.6; ESI-HRMS calcd for C$_{14}$H$_{10}$ClIO$_2$S (M + Na)$^+$ 426.9027; found 426.9030.

(E)-(1-iodo-2-(methylsulfonyl)vinyl)benzene (3ga)7 white solid (75.8 mg, 82%); mp 81–82 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.47 – 7.43 (m, 2H), 7.41 – 7.36 (m, 3H), 7.30 (s, 1H), 2.65 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 140.1, 139.3, 130.2, 128.2, 127.7, 114.8, 42.9.

(E)-(2-(ethylsulfonyl)-1-iodovinyl)benzene (3ka); white solid (82.2 mg, 85%); mp 76–77 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.48 – 7.41 (m, 2H), 7.41 – 7.34 (m, 3H), 7.20 (s, 1H), 2.71 (q, $J = 7.4$ Hz, 2H), 1.26 (t, $J = 7.4$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 139.3, 137.9, 130.1, 128.0, 127.6, 115.4, 49.0, 6.6; ESI-HRMS calcd for C$_{10}$H$_{11}$IO$_2$S (M + H)$^+$ 322.9597; found 322.9593.

(E)-(2-(cyclopropylsulfonyl)-1-iodovinyl)benzene (3la). white solid (84.2 mg, 84%); mp 73–74 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.46 – 7.43 (m, 2H), 7.39 – 7.33 (m, 3H), 7.30 (s, 1H), 2.17 – 2.10 (m, 1H), 1.13 – 1.06 (m, 2H), 0.93 – 0.85 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 139.8, 139.3, 129.9, 127.9, 127.7, 113.9, 31.6, 5.2; ESI-HRMS calcd for C$_{11}$H$_{11}$IO$_2$S (M + H)$^+$ 334.9597; found 334.9599.

(E)-(4-(phenylsulfonyl)but-3-en-1-yne-1,3-diyl)dibenzene (4).1 white solid (155.9 mg, 87%); mp 82–83 °C; 1H NMR (400 MHz, CDCl$_3$) δ 7.56 (d, $J = 8.3$ Hz, 2H), 7.52 – 7.46 (m, 2H), 7.44 – 7.30 (m, 8H), 7.20 (d, $J = 8.4$ Hz, 2H), 6.96 (s, 1H), 2.39 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ

S12
144.1, 137.9, 136.7, 135.3, 134.1, 131.8, 129.5, 129.4, 128.9, 128.3, 127.8, 127.6, 121.4, 97.2, 88.3, 21.5.

(2-(phenylsulfonyl)ethene-1,1-diyldibenzene (5).) Yellow solid (37.1 mg, 82%); mp 98–99 °C; \(^1 \)H NMR (400 MHz, CDCl₃) \(\delta \) 7.48 (d, \(J = 8.4 \) Hz, 2H), 7.40 – 7.33 (m, 2H), 7.32 – 7.28 (m, 4H), 7.23 – 7.18 (m, 2H), 7.18 – 7.07 (m, 4H), 7.01 (s, 1H), 2.38 (s, 3H); \(^{13} \)C NMR (100 MHz, CDCl₃) \(\delta \) 154.5, 143.6, 139.0, 138.4, 135.4, 130.1, 129.6, 129.2, 128.8, 128.7, 128.4, 128.0, 127.6, 127.5, 21.4.

1-methyl-4-((phenylethynyl)sulfonyl)benzene (6). White solid (108.9 mg, 85%); mp 81–82 °C; \(^1 \)H NMR (400 MHz, CDCl₃) \(\delta \) 7.96 (d, \(J = 8.4 \) Hz, 2H), 7.54 – 7.49 (m, 2H), 7.49 – 7.44 (m, 1H), 7.41 – 7.34 (m, 4H), 2.47 (s, 3H); \(^{13} \)C NMR (100 MHz, CDCl₃) \(\delta \) 145.3, 138.9, 132.6, 131.4, 129.9, 128.6, 127.4, 117.9, 92.9, 85.5, 21.7.

References

F. NMR Spectra

1H-NMR and 13C-NMR of 3aa
1H-NMR and 13C-NMR of 3ab
1H-NMR and 13C-NMR of 3ac
1H-NMR and 13C-NMR of 3ad
1H-NMR and 13C-NMR of 3ae
1H-NMR and 13C-NMR of 3af
1H-NMR and 13C-NMR of 3ag
1H-NMR and 13C-NMR of 3ah
1H-NMR and 13C-NMR of 3ai
1H-NMR and 13C-NMR of 3aj
1H-NMR and 13C-NMR of 3ak
1H-NMR and 13C-NMR of 3al
1H-NMR and 13C-NMR of 3am
1H-NMR and 13C-NMR of 3an
1H-NMR and 13C-NMR of 3ao
1H-NMR and 13C-NMR of 3ap
1H-NMR and 13C-NMR of 3ba
1H-NMR and 13C-NMR of 3ca
1H-NMR and 13C-NMR of 3da
$^1\text{H-NMR and } ^{13}\text{C-NMR of 3ea}$
1H-NMR and 13C-NMR of 3fa
1H-NMR and 13C-NMR of 3ga
1H-NMR and 13C-NMR of 3ha
1H-NMR and 13C-NMR of 3ia
1H-NMR and 13C-NMR of 3ja
1H-NMR and 13C-NMR of 3ka

![H-NMR Spectrum](image1)

![C-NMR Spectrum](image2)

S39
1H-NMR and 13C-NMR of 3la
1H-NMR and 13C-NMR of 4
^{1}H-NMR and ^{13}C-NMR of 5
1H-NMR and 13C-NMR of 6