Supporting Information

Unified Strategy for Silver-, Base-, and Oxidant-free Direct Arylation of C-H Bonds

Manoj K. Sahoo, Siba P. Midya, Vinod G Landge, and Ekambaram Balaraman*

Table of Contents

1. General Information S2
2. Experimental Section S3-S17
3. Characterization Data S18-S38
4. References S38
5. Copy of 1H and 13C Spectra S40-S82
1. General Information

All catalytic experiments were carried out using standard Schlenk techniques. All solvents were reagent grade or better. Deuterated solvents were used as received without any further purification. Most of the chemicals used in catalysis reactions were purified according to standard procedure (or by vacuum distillation/sublimation). Visible light photoredox catalyst Eosin-Y was purchased from Sigma Aldrich and used as received. Aryl diazonium tetrafluoroborate salts was prepared by previously known procedure. Pivalamides were prepared by the reaction of the corresponding anilines with trimethylacetyl chloride. Thin layer chromatography (TLC) analyses were performed on commercial aluminum plates bearing a 0.25 mm layer of Merck Silica gel 60F254, which were visualized with UV light at 254 nm or under iodine. Column chromatography was performed with SiO2 (Silicycle Siliaflash F60 (230-400 mesh). 1H NMR (400, 200 or 500 MHz), 13C NMR spectra were recorded on the 100 or 125 MHz NMR spectrometer. Deuterated chloroform was used as the solvent, and chemical shift values (δ) are reported in parts per million relatives to the residual signals of this solvent [δ 7.27 for 1H (chloroform-d), δ 77.0 for 13C (chloroform-d). Abbreviations used in the NMR follow-up experiments: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; sep, septet; m, multiplet. GC analysis was carried out using an HP-5 column (30 m, 0.25 mm, 0.25μ). Mass spectra were obtained on a GCMS-QP 5000 instruments with ionization voltages of 70 eV. High-resolution mass spectra (HRMS) were obtained by fast atom bombardment (FAB) using a double focusing magnetic sector mass spectrometer and electron impact (EI) ionization technique (magnetic sector-electric sector double focusing mass analyzer).
2. Experimental Section

2.1 Synthesis of starting materials

(a) General procedure for the preparation of aryl diazonium tetrafluoroborates

In a 50 mL round-bottom flask, the aniline (10 mmol) was dissolved in a mixture of absolute ethanol (3 mL) and an aqueous solution of HBF$_4$ (50%, 2.5 mL). The tert-butyl nitrite (2.7 mL) was added drop wise to the solution at 0 °C. The mixture was stirred at room temperature for 1 h and diethyl ether (20 mL) was added to precipitate the arenediazonium tetrafluoroborate. The solid was filtered off and washed with diethyl ether (3 × 10 mL). The aryl diazoni-um tetrafluoroborate was dried in vacuo (10$^{-3}$ mbar) for 10 minutes and was then directly used without further purification. Spectral data are agreement with the data available in the literature.S2

\[
\begin{array}{c}
\text{R} \begin{array}{c}
\text{II} \\
\text{NH}_2
\end{array} + \text{tBuONO} \\
\text{EtOH,0 }\circ\text{C, 1 h}
\end{array}
\rightarrow
\begin{array}{c}
\text{R} \begin{array}{c}
\text{II} \\
\text{N}_2\text{BF}_4
\end{array}
\end{array}
\]

Scheme S1. Synthesis of aryl diazonium tetrafluoroborates.

(b) General procedure for preparation of pivalamides

To a 100 mL RB with a magnetic stirring bar, 20 mL water, 15 mL dichloromethane, 15 mmol of aniline and 30 mmol NaOH was taken and cooled to 0 °C. Separately, in a 10 mL conical flask 5 mol% of Bu$_3$NI (0.75 mmol, 278 mg) was taken in 5 mL dichloromethane and cooled to 0 °C. Similarly in a 25 mL RB with a glass stopper 15 mmol of pivaloyl chloride (1.9 mL) in 10 mL of dichloromethane was taken and cooled to 0 °C. After 10 minutes both the solution of Bu$_3$NI and pivaloyl chloride were added to the aniline solution simultaneously at once, and was stirred vigorously for another 10 minutes, then to it 20 mL of ice cold water was added, excess base was neutralized with saturated NH$_4$Cl solution, the organic layer was extracted with dichloromethane (3 x 50 mL), then combined organic layer was washed with brine solution, dried over anhydrous Na$_2$SO$_4$, the solvent was removed under reduced pressure. The crude product was recrystallized from 1:1 mixture of dichloromethane and hexane at room temperature (1-2 days). Spectral data are agreement with the data available in the literature.S3

\[
\begin{array}{c}
\text{R} \begin{array}{c}
\text{II} \\
\text{NH}_2
\end{array} + \text{tBuC(O)Cl} \\
\text{Bu}_3\text{NI, NaOH, DCM + H}_2\text{O, 0 }\circ\text{C, 10 min}
\end{array}
\rightarrow
\begin{array}{c}
\text{R} \begin{array}{c}
\text{II} \\
\text{N} \text{tBu}
\end{array}
\end{array}
\]

Scheme S2. Synthesis of pivalamides.
2.2 General procedure room temperature oxidant- and base-free Eosin-Y/Pd catalyzed C-H arylation of anilides

In an oven-dried 15 mL schlenk tube with a magnetic stirring bar was charged with pivalamide 1 (0.2 mmol), aryldiazonium salt 2 (0.3 mmol), Eosin-Y (1 mol %), Pd(OAc)$_2$ (10 mol %), and 1 mL of methanol under argon atm. Then the reaction tube was freeze in liquid N$_2$, degassed by the freeze-pump-thaw procedure (3×), refilled with argon gas. Then the schlenk tube was placed on a magnetic stirrer with two 3W Green LED light bulbs kept about 5 cm away from it and irradiated at room temperature with constant stirring. After 18 h, the reaction mixture was quenched with saturated 15 mL NaHCO$_3$ solution, and the aqueous layer was extracted with EtOAc (3 x 15 mL). Finally, the combined organic layer was washed with brine solution (15 mL), dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel with a mixture of EtOAc and petroleum ether to afford desired ortho-arylated product 3 or 4.

Scheme S3. Room temperature oxidant-, base-free Eosin-Y/Pd catalyzed C-H arylation of anilides.

2.3 General procedure for gram-scale synthesis

In an oven-dried 100 mL schlenk round bottomed flask with a magnetic stirring bar was charged with pivalamide 1 (10 mmol), aryldiazonium salt 2 (15 mmol), Pd(OAc)$_2$ (10 mol %), Eosin-Y (1.0 mol %), and 50 mL of anhydrous methanol under argon atm. Then the reaction tube was freeze in liquid N$_2$, degassed by the freeze-pump-thaw procedure (3×), refilled with argon gas. Then the round bottomed flask was placed on a magnetic stirrer with two 3 W Green Led light bulbs kept about 5 cm away from it and irradiated at room temperature with constant stirring. After 24 h, the reaction mixture was quenched with saturated 100 mL NaHCO$_3$ solution, and the aqueous layer was extracted with EtOAc (2 x 100 mL). Finally, the combined organic layer was washed with brine solution (100 mL), dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel with mixture of EtOAc and petroleum ether to afford desired ortho-arylated product in gram-scale.
2.4 Reusability of the homogeneous system

The reusability of present catalytic system was checked by following representative procedure (Sec 2.2). After the first catalytic run between 1a and 2a in the presence of catalytic amounts of eosin-Y (1 mol%) and Pd(OAc)\textsubscript{2} (10 mol%) in methanol under standard conditions, the yield of the ortho-arylated product 3a observed was 95% (GC yield). In the same reaction vessel were placed fresh 1a and 2a, and the reaction was continued further without the addition of catalysts. After 18 h, the yield determined for the second cycle was 91% (GC yield).

2.5 Rate Order Determination

The order for the ortho C-H arylation reaction of anilides with various reaction components was determined by the initial rate method. The data of the concentration of the product vs time (h) plot was fitted linearly with Origin Pro 8. The slope of the linear fitting is the reaction rate. The order of the reaction was then determined by plotting the log (rate) vs log (conc) for a particular component.

2.5.1 Representative Procedure: Rate Order Determination for N-(m-tolyl)pivalamide

To determine the order for N-(m-tolyl)pivalamide in the ortho C-H arylation of anilides, the initial rates at different initial concentrations of N-(m-tolyl)pivalamide were recorded. The final data was obtained by averaging the results of two independent runs for each experiment.

In an oven-dried 15 mL schlenk tube with a magnetic stirring bar was charged with 4-chlorobenzene diazonium tetrafluoroborate (136 mg, 0.6 mmol), Pd(OAc)\textsubscript{2} (9.0 mg, 0.04 mmol), Eosin-Y (2.6 mg, 0.004 mmol) and specific amount of N-(m-tolyl)pivalamide (as shown in Table S1). To it 2.0 mL of dry methanol was added, followed by addition of

Scheme S4. Gram-scale synthesis of C-H arylated anilides.

\[\text{MeOH, RT, Ar atm, Silver- and additive-free} \]

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (p\text{-Cl})</td>
<td>4a</td>
<td>82%</td>
</tr>
<tr>
<td>F (p\text{-Cl})</td>
<td>4n</td>
<td>87%</td>
</tr>
</tbody>
</table>
mesitylene as internal standard (0.056 mL, 0.4 mmol) under argon atm. Then the reaction
tube was freezed in liquid N₂, degassed by the freeze-pump-thaw procedure (3×), refilled
with argon gas. The temperature of schlenk tube was brought to room temperature, then the
schlenk tube was placed on a magnetic stirrer with two 3W Green LED light bulbs kept about
5 cm away from it and irradiated at room temperature with constant stirring. At regular
intervals, from the reaction vessel an aliquot of sample was withdrawn to the GC vial. The
sample was diluted with methanol and subjected to GC analysis. The concentration of the
product 3a obtained in each sample was determined with respect to the internal standard
mesitylene.

Table S1. Rate of ortho C-H Arylation Reaction at different Initial Concentration of N-
(m-tolyl)pivalamide.

<table>
<thead>
<tr>
<th>Experiment no.</th>
<th>Amount of N-(m-tolyl)pivalamide (mg)</th>
<th>Initial conc. of N-(m-tolyl)pivalamide [M]</th>
<th>Initial Rate [Mh⁻¹] x 10⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77</td>
<td>0.2</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>115</td>
<td>0.3</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>153</td>
<td>0.4</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>191</td>
<td>0.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Figure S1. (A) Time-dependent formation of 3a at different initial concentration of N-(m-
tolyl)pivalamide 1a. (B) Plot of log(rate) vs log(conc. of 1a).

2.5.2 Representative Procedure: Rate Order Determination for 4-
chlorobenzenediazonium tetrafluoroborate

To determine the order for 4-chlorobenzenediazonium tetrafluoroborate in the ortho
C-H arylation of anilides, the initial rates at different initial concentrations of 4-
chlorobenzenediazonium tetrafluoroborate were recorded. The final data was obtained by averaging the results of two independent runs for each experiment.

Representative procedure (Sec 2.5.1) was followed, employing \(N-(m\text{-tolyl})\text{pivalamide} \) (76.5 mg, 0.4 mmol), \(\text{Pd(OAc)}_2 \) (9.0 mg, 0.04 mmol), Eosin-Y (2.6 mg, 0.004 mmol), mesitylene as internal standard (0.056 mL, 0.4 mmol) and specific amount of 4-chlorobenzenediazonium tetrafluoroborate (as shown in Table S2) in 2.0 mL of dry methanol.

Table S2. Rate of ortho C-H Arylation Reaction at different Initial Concentration of 4-chlorobenzenediazonium tetrafluoroborate.

<table>
<thead>
<tr>
<th>Experiment no.</th>
<th>4-chlorobenzenediazonium tetrafluoroborate (mg)</th>
<th>Initial conc. of 4-chlorobenzenediazonium tetrafluoroborate [M]</th>
<th>Initial Rate [Mh(^{-1})] x 10(^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>91</td>
<td>0.2</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>136</td>
<td>0.3</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>181</td>
<td>0.4</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>226</td>
<td>0.5</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Figure S2. (A) Time-dependent formation of 3a at different initial concentration of 4-chlorobenzenediazonium tetrafluoroborate. 2a. (B) Plot of log(rate) vs log(conc. of 2a).

2.5.3 Representative Procedure: Rate Order Determination for Eosin-Y

To determine the order for Eosin-Y in the ortho C-H arylation of anilides, the initial rates at different initial concentrations of Eosin-Y were recorded. The final data was obtained by averaging the results of two independent runs for each experiment.

Representative procedure (Sec 2.5.1) was followed, employing \(N-(m\text{-tolyl})\text{pivalamide} \) (76.5 mg, 0.4 mmol), 4-chlorobenzenediazonium tetrafluoroborate (136 mg, 0.6 mmol),
Pd(OAc)$_2$ (9.0 mg, 0.04 mmol), mesitylene as internal standard (0.056 mL, 0.4 mmol) and specific amount of Eosin-Y (as shown in Table S3) in 2.0 mL of dry methanol.

Table S3. Rate of ortho C-H Arylation Reaction at different Initial Concentration of Eosin-Y.

<table>
<thead>
<tr>
<th>Experiment no.</th>
<th>Eosin-Y (mg)</th>
<th>Initial conc. of Eosin-Y [M]</th>
<th>Initial Rate [Mh$^{-1}$] x 10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.6</td>
<td>0.002</td>
<td>2.79</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>0.01</td>
<td>3.45</td>
</tr>
<tr>
<td>3</td>
<td>25.9</td>
<td>0.02</td>
<td>4.40</td>
</tr>
<tr>
<td>4</td>
<td>38.9</td>
<td>0.03</td>
<td>4.82</td>
</tr>
</tbody>
</table>

Figure S3. (A) Time-dependent formation of 3a at different initial concentration of Eosin-Y. (B) Plot of log(rate) vs log(conc. of Eosin-Y).

2.6.1 Representative Procedure: Yield determination for Pd(OAc)$_2$ (Figure S4). To determine the effect of mol% of Pd(OAc)$_2$ in the ortho C-H arylation of anilides 3a, the yields at different initial concentrations of Pd(OAc)$_2$ were recorded.

Representative procedure (Sec 2.2) was followed, employing N-(m-tolyl)pivalamide (38 mg, 0.2 mmol), 4-chlorobenzenediazonium tetrafluoroborate (38 mg, 0.3 mmol), Eosin-Y (1.3 mg, 0.002 mmol) and specific amount of Pd(OAc)$_2$ (as shown in Table S4) in 1.0 mL of dry methanol.
Table S4. Yield of ortho C-H Arylation Reaction at different Initial Concentration of Pd(OAc)$_2$.

<table>
<thead>
<tr>
<th>Experiment no.</th>
<th>Amount of Pd(OAc)$_2$ (mg)</th>
<th>Initial conc. of Pd(OAc)$_2$ [M]</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.002</td>
<td>4 (by GC)</td>
</tr>
<tr>
<td>2</td>
<td>1.1</td>
<td>0.005</td>
<td>43 (isolated yield)</td>
</tr>
<tr>
<td>3</td>
<td>2.2</td>
<td>0.01</td>
<td>61 (isolated yield)</td>
</tr>
<tr>
<td>4</td>
<td>4.5</td>
<td>0.02</td>
<td>93 (isolated yield)</td>
</tr>
</tbody>
</table>

Figure S4. Yield formation of 3a at different initial concentration of Pd(OAc)$_2$

2.6.2 Representative Procedure: Time-dependent formation of 3a

Representative procedure (Sec 2.5.1) was followed, employing N-(m-tolyl)pivalamide (76.5 mg, 0.4 mmol), 4-chlorobenzene diazonium tetrafluoroborate (136 mg, 0.6 mmol), Pd(OAc)$_2$ (9.0 mg, 0.04 mmol), mesitylene as internal standard (0.056 mL, 0.4 mmol) and Eosin-Y (2.6 mg, 0.004 mmol), in 2.0 mL of dry methanol. At various time interval, from the reaction vessel an aliquot of sample was withdrawn to the GC vial. The sample was diluted with methanol and subjected to GC analysis. The final data was obtained by averaging the results of two independent runs for each experiment.

Table S5. GC yield of 3a and conversion of 1a at different time intervals.

<table>
<thead>
<tr>
<th>Experiment no.</th>
<th>Time (h)</th>
<th>Yield of 3a (%)</th>
<th>Conversion of 1a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>
Figure S5. GC yield of 3a and conversion of 1a at different time intervals.

2.7 Mechanistic investigation
2.7.1 Radical trapping experiment

In an oven-dried 15 mL schlenk tube with a magnetic stirring bar was charged with pivalamide 1a (0.2 mmol), aryldiazonium salt 2a (0.3 mmol), Eosin-Y (1 mol %), Pd(OAc)$_2$ (10 mol %), and 1 mL of methanol under argon atm. Then the reaction tube was freezeed in liquid N$_2$, degassed by the freeze-pump-thaw procedure (3×), refilled with argon gas. Then the schlenk tube was placed on a magnetic stirrer with two 3W Green LED light bulbs kept about 5 cm away from it and irradiated at room temperature with constant stirring. After 18 h, the reaction mixture was analysed on GC-MS and the formation of O-arylated-TEMPO product was observed.
2.7.2 H/D exchange experiments

Deuterium labelled compound 1d was prepared according to reported literature procedure with 86% deuterium incorporation. Two independent experiments (i) with 2a and (ii) without 2a were performed under standard conditions using freshly distilled dry MeOH. In both the experiments the recovered staring material 1d showed 86%. Thus, the C-H arylation of the isotopically labeled substrate [D]-1d was not accompanied by H/D exchange reactions, which is indicative of a kinetically relevant C-H palladation step.

2.7.3a Light-Dark Experiment

Following representative procedure (Sec 2.5.1), two parallel experiments {A (Light) and B (Dark)} were carried out employing N-(3-methoxyphenyl)pivalamide 1f (83 mg, 0.4 mmol), 4-chlorobenzenediazonium tetrafluoroborate 2a (136 mg, 0.6 mmol), Pd(OAc)$_2$ (9.0 mg, 0.04 mmol), eosin-Y (2.6 mg, 0.004 mmol) and mesitylene (0.056 mL, 0.4 mmol) as internal standard in 2.0 mL of dry methanol. Initially, the reaction (B) was irradiated with a light source under the standard condition for the first 60 minutes, and then carried out in the dark condition. However, reaction (A) was irradiated with continues irradiation. Continuous sampling was undertaken with the different time intervals, and yield of ortho-arylated product (4f) was determined by gas chromatography.
2.7.3b Light-Dark Experiment (ON/OFF experiment)

Following representative procedure (Sec 2.5.1), the reaction was carried out employing \(N\)-(3-methoxyphenyl)pivalamide \(1f\) (83 mg, 0.4 mmol), 4-chlorobenzenediazonium tetrafluoroborate \(2a\) (136 mg, 0.6 mmol), \(\text{Pd(OAc)}_2\) (9.0 mg, 0.04 mmol), eosin-Y (2.6 mg, 0.004 mmol) and mesitylene (0.056 mL, 0.4 mmol) as internal standard in 2.0 mL of dry methanol. The reaction is conducted using alternating intervals of light and dark. In each interval, continuous sampling was undertaken with the different time intervals, and yield of ortho-arylated product \(4f\) was determined by gas chromatography.

![Figure S6. Kinetic profile 4f at different time intervals for two separate (dark and light) experiments.](image)

![Figure S7. GC yield of 4f with deferent time intervals (Light-Dark experiment).](image)
2.7.4 Identification of intermediate Pd-complex

To an oven-dried 5 mL screw-capped vial, 1f (70 mg, 0.33 mmol), Pd(OAc)$_2$ (75 mg, 1 equiv.), N-Formylglycine (35 mg, 1 equiv) and hexafluoroisopropanol (2 mL) were added under argon atm. The mixture was stirred for 3 hr at 100 °C followed by cooling to room temperature. The solution was filtered through a celite pad and submitted to HRMS analysis. HRMS (EI): m/z Calcd for [M-H] $C_{15}H_{19}N_2O_5$Pd: 413.0329; Found: 413.0323.

Figure S8. HRMS of intermediate Pd-complex
2.8. Effect of other directing group

The effect of substituent on the acyl group of anilides was further studied by changing the N-pivaloyl (i.e. t-Butyl) group to the N-acetyl (i.e. ethyl) group and gave the C-H arylated product in 31% yield only (mono/bis ≈ 2:1). To further extend the scope of the reaction, we investigated different amides such as -NHCONMe₂ and -NHTs as the directing groups and found to be not suitable for the present arylation reaction. Due to the favorable conformation of the pivaloyl group good selectivity of the site-selective product was observed.

![Figure S9. Possible intermediate complexes.](image)

2.9 Diversification of ortho-arylaniline derivatives

2.9.1 Removal of directing group

To a 10 mL screw-capped tube, ortho-aryl pivalamide (0.5 mmol), 10 weight percentage of Aliquat-336, 0.5 mL of 48 % aqueous HBr and 1.0 mL of n-octane were added under argon atm. Then the tube was kept in a preheated oil bath at 130 °C for 12 h. After cooling to room temperature, the reaction mixture was neutralised with saturated Na₂CO₃. The compound was extracted with 25 mL of ethyl acetate three times. Then the organic layer

![Figure S10. A possible conformation of anilide 1.](image)
was washed with 25 mL brine solution, dried over anhy. Na₂SO₄ and concentrated in \textit{vacuo}. The residue was purified by column chromatography on silica gel with a mixture of EtOAc in petroleum ether to afford desired \textit{ortho}-arylated anilines (5).

2.9.2 Synthesis of phenanthridine

![Chemical structure](image)

To an oven dried 10 mL sealed tube with magnetic stirring bar was charged \textit{ortho}-arylated pivalamide 3 or 4 (0.2 mmol), POCl₃ (0.6 mmol, 0.056 mL). To it 0.5 mL dry Toluene was added under argon atmosphere. The Teflon screw cap was closed and the tube was kept in a preheated oil bath at 110 °C, the reaction was continued for 12 h. After completion the reaction mixture was quenched by addition of aq. NaHCO₃. The mixture was extracted with CH₂Cl₂ (3 × 10 mL). The combined extracts were washed with brine solution, dried over anhydrous Na₂SO₄ and concentrated under the reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of hexanes and EtOAc as eluent to afford the corresponding phenanthridine derivatives. Spectral data are agreement with the data available in the literature.⁵⁵

2.9.3 Carbazole synthesis

![Chemical structure](image)

To a 20 mL two-necked flask with a reflux condenser and a rubber cup were added 2-aryl aniline (0.5 mmol), [Cp*IrCl₂]₂ (0.01 mmol), Cu(OAc)₂ (0.1 mmol), PivOH (1.0 mmol) in NMP (3 mL). The resulting mixture was stirred under air at 120 oC for 3h. After cooling, the reaction mixture was extracted with ethyl acetate (100 mL), washed with aqueous NaHCO₃ (100 mL, three times), and dried over Na₂SO₄. Purification by column

⁵⁵ Spectral data are agreement with the data available in the literature.
chromatography on silica gel using hexane-ethyl acetate (10:1, v/v) as eluent gave carbazole. Spectral data are agreement with the data available in the literature.S6

\subsection*{2.9.4 Cyclization with diphenylacetylene}

\[\text{NH}_2 \quad \text{Pd(OAc)}_2 \, (5 \text{ mol}) \quad \text{Cu(OAc)}_2 \, (2 \text{ equiv.}) \quad \overset{\text{DMSO, 120 °C, 5 h}}{\longrightarrow} \quad \text{Ph} \quad \text{Ph} \quad 8 \, (72\%)\]

In a oven-dried, 5.0 mL vial equipped with a stirring bar was charged with Pd(OAc)$_2$ (3.4 mg, 0.015 mmol), Cu(OAc)$_2$ (114.4 mg, 0.63 mmol), 5a (0.30 mmol) and diphenylacetylene (0.45 mmol), followed by sequential addition of DMSO (3.0 mL). The vial was sealed with a Teflon screw cap and then the reaction mixture was heated at 120 °C for 5 h. After the reaction vessel was cooled to room temperature, the mixture was extracted with EtOAc, dried over MgSO$_4$, filtered, and concentrated under reduced pressure. The residue was then purified on silica gel to yield 8 in 72%. Spectral data are agreement with the data available in the literature.S7

\subsection*{2.9.5 Synthesis of BoscalidS8}

\[\text{Cl} \quad \text{NH}_2 \quad \overset{10 \text{ mol}% \, \text{DMAP}}{\text{Et}_3\text{N, DCM}} \quad \text{Cl} \quad \overset{0 \text{ °C to RT, 12 h}}{\longrightarrow} \quad 10 \, (81\%) \quad \text{Boscalid (BASF)}\]

To a stirred solution of 2-chloronicotinoyl chloride 9 (88 mg, 0.5 mmol), 4-dimethylaminopyridine (6 mg, 0.05 mmol) in 4 mL dichloromethane, 4’-chloro-[1,1’-biphenyl]-2-amine 5a (102 mg, 0.5 mmol), triethylamine (0.14 mL, 1.0 mmol) in dichloromethane (1.0 mL) was added drop wise at 0 °C. The reaction was allowed to stir at 0 °C for 1 h, and another 12 h at room temperature followed by addition of dichloromethane (20 mL) and water (20 mL). The combined organic extracts were dried over Na$_2$SO$_4$ and the organic solvent was removed under reduced pressure. The crude residue was purified by column chromatography on silica gel (230-400 mesh) using a mixture of petroleum ether/EtOAc (R$_f$= 0.5, petroleum ether/EtOAc = 2:1), to afford 2-Chloro-N-(4’-chloro-[1,1’-biphenyl]-2-yl)nicotinamide (10, 104 mg, 81%) as a white solid.
2.9.6 Synthesis of a Green host material (12)

To a 50 mL round bottomed flask carbazole 7a (2.4 mmol, 334 mg), 4,4’-diiodobiphenyl 11 (1.0 mmol, 406 mg), K₂CO₃ (8.0 mmol, 1.11 g), copper powder (2.8 mmol, 178 mg) and 18-crown-6 (0.2 mmol, 53 mg) were taken under argon atmosphere. To it 20 mL of o-dichlorobenzene was added and the mixture was allowed to reflux for 24 h. The reaction mixture was filtered through a small pad of celite and the residue was washed with chloroform. The combined solvents were removed under reduced pressure and the resulted residue was recrystallized from methanol at -20 °C to give the product 12 as a white solid (344 mg, 71%).

517
3. Characterization Data

(3a) \(N\)-(4'-chloro-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (56 mg, 93%); \(R_f = 0.4\) (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 20:1; \(^1\)H NMR (200 MHz, CDCl\(_3\)): \(\delta = 8.08\) (s, 1H), 7.38 (d, \(J = 8.6\) Hz, 2H), 7.25-7.19 (m, 3H), 7.02 (d, \(J = 7.8\) Hz, 1H), 6.91 (d, \(J = 7.8\) Hz, 1H), 2.32 (s, 3H), 1.05 (s, 9H); \(^{13}\)C NMR (50 MHz, CDCl\(_3\)): \(\delta = 176.38, 138.91, 136.62, 134.64, 133.90, 130.76, 129.57, 129.14, 128.40, 125.01, 122.05, 39.77, 27.40, 21.45\); HRMS (ESI) m/z calculated for \(C_{18}H_{20}ClNO\) [M+H]+ 302.1312; found 302.1306.

(3b) \(N\)-(4-methyl-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (42 mg, 79%); \(R_f = 0.4\) (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 25:1; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.25\) (s, 1H), 7.49 (t, \(J = 7.6\) Hz, 2H), 7.46 (brs, 1H), 7.41 (t, \(J = 7.6\) Hz, 1H), 7.36 (d, \(J = 7.3\) Hz, 2H), 7.15 (d, \(J = 7.6\) Hz, 1H), 6.99 (d, \(J = 8.3\) Hz, 1H), 2.41 (s, 3H), 1.11 (s, 9H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 176.30, 138.46, 138.08, 134.83, 129.48, 129.39, 128.95, 127.82, 124.63, 121.37, 39.74, 27.31, 21.45\); HRMS (ESI) m/z calculated for \(C_{18}H_{21}NO\) [M+H]+ 268.1701, found .268.1696.
(3c) \(N\)-(2’-methoxy-4-methyl-[1,1’-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (46 mg, 78%); \(R_f = 0.35\) (petroleum ether/EtOAc = 10:1). Purified using a mixture of petroleum ether/EtOAc = 20:1; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.00\) (s, 1H), 7.75 (brs, 1H), 7.41 (t, \(J = 8.4\) Hz, 1H), 7.23 (d, \(J = 8.4\) Hz, 1H), 7.13 (d, \(J = 8.0\) Hz, 1H), 7.08 (t, \(J = 7.6\) Hz, 1H), 7.04-7.00 (m, 2H), 3.84 (s, 3), 2.41 (s, 3H), 1.09 (s, 9H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 176.35, 155.84, 138.22, 135.45, 132.21, 130.27, 129.46, 127.32, 127.27, 125.07, 122.67, 121.54, 110.88, 55.74, 39.42, 27.27, 21.38\); HRMS (ESI) m/z calculated for \(C_{19}H_{23}NO_2\) [M+H]\(^+\) 298.1807, found 298.1802.

(3d) \(N\)-(2’-bromo-4-methyl-[1,1’-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a colourless oil (48 mg, 70%); \(R_f = 0.3\) (petroleum ether/EtOAc = 10:1). Purified using a mixture of petroleum ether/EtOAc = 15:1; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.14\) (s, 1H), 7.72 (d, \(J = 8.0\) Hz, 1H), 7.42 (t, \(J = 7.6\) Hz, 1H), 7.31-7.27 (m, 2H), 7.10 (brs, 1H), 7.06 (d, \(J = 7.6\) Hz, 1H), 7.01 (d, \(J = 7.6\) Hz, 1H), 2.42 (s, 3H), 1.05 (s, 9H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 176.22, 139.09, 138.82, 134.92, 132.87, 131.94, 129.74, 129.06, 128.95, 127.94, 124.71, 124.12, 121.76, 39.54, 27.15, 21.53\); HRMS (ESI) m/z calculated for \(C_{18}H_{20}BrNO\) [M+H]\(^+\) 346.0807, found 346.0801.
(3e) \(N\)-(3',4-dimethyl-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (50 mg, 89%); \(R_f = 0.45\) (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 25:1; \(^1\)H NMR (200 MHz, CDCl\(_3\)): \(\delta = 8.25\) (s, 1H), 7.52 (brs, 1H), 7.38 (t, \(J = 7.6\) Hz, 1H), 7.24-7.12 (m, 4H), 6.98 (d, \(J = 7.7\) Hz, 1H), 2.41 (m, 6H), 1.12 (s, 9H); \(^1^3\)C NMR (50 MHz, CDCl\(_3\)): \(\delta = 176.28, 138.65, 138.35, 137.95, 134.82, 130.12, 129.44, 129.35, 128.89, 128.51, 126.39, 124.58, 121.25, 39.77, 27.33, 21.47, 21.38; HRMS (ESI) m/z calculated for C\(_{19}\)H\(_{23}\)NO [M+H]^+ 282.1858, found 282.1852.

(3f) \(N\)-(4-methyl-3'-[(trifluoromethyl)]-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a colourless oil (50 mg, 73%); \(R_f = 0.5\) (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 30:1; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.11\) (s, 1H), 7.67 (d, \(J = 7.6\) Hz, 1H), 7.64 (s, 1H), 7.61 (t, \(J = 7.6\) Hz, 1H), 7.56 (d, \(J = 7.7\) Hz, 1H), 7.26 (brs, 1H), 7.14 (d, \(J = 7.9\) Hz, 1H), 7.02 (d, \(J = 7.9\) Hz, 1H), 2.40 (s, 3H), 1.11 (s, 9H); \(^1^3\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 176.48, 139.28, 139.14, 134.52, 132.88, 131.26\) (q, \(J_{C-F} = 32.2\) Hz), 129.63, 129.54, 128.50, 126.12 (q, \(J_{C-F} = 3.8\) Hz), 125.36, 124.51 (q, \(J_{C-F} = 4.0\) Hz), 123.86 (q, \(J_{C-F} = 272.8\) Hz), 122.68, 39.68, 27.27, 21.41; HRMS (ESI) m/z calculated for C\(_{19}\)H\(_{20}\)F\(_3\)NO [M+H]^+ 336.1575; found 336.1570.
(3g) \(N\)-(4-methyl-3'-nitro-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (41 mg, 66%); \(R_f = 0.3\) \((\text{petroleum ether/EtOAc} = 10:1)\), Purified using a mixture of petroleum ether/EtOAc = 10:1; \(^1\)H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta = 8.25-8.22\) (m, 2H), 7.96 (s, 1H), 7.72 (d, \(J = 7.8\) Hz, 1H), 7.65 (t, \(J = 7.8\) Hz, 1H), 7.25 (brs, 1H), 7.17 (d, \(J = 7.8\) Hz, 1H), 7.06 (d, \(J = 7.8\) Hz, 1H), 2.41 (s, 3H), 1.13 (s, 9H); \(^{13}\)C NMR (50 MHz, CDCl\textsubscript{3}): \(\delta = 176.47, 148.35, 140.23, 139.67, 135.48, 134.30, 129.82, 129.70, 128.42, 125.95, 124.09, 123.82, 122.47, 39.60, 27.31, 21.34\); HRMS (ESI) m/z calculated for \(C_{18}H_{20}N_2O_3\) [M+H]\(^+\) 313.1552; found 313.1546.

(3h) \(N\)-(3'-cyan-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a colourless oil (44 mg, 75%); \(R_f = 0.5\) \((\text{petroleum ether/EtOAc} = 10:1)\), Purified using a mixture of petroleum ether/EtOAc = 25:1; \(^1\)H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta = 7.98\) (s, 1H), 7.69 (d, \(J = 7.1\) Hz, 1H), 7.66 (s, 1H), 7.62 (d, \(J = 7.6\) Hz, 1H), 7.58 (t, \(J = 7.1\) Hz, 1H), 7.17 (brs, 1H), 7.13 (d, \(J = 7.6\) Hz, 1H), 7.05 (d, \(J = 7.8\) Hz, 1H), 2.40 (s, 3H), 1.14 (s, 9H); \(^{13}\)C NMR (126 MHz, CDCl\textsubscript{3}): \(\delta = 176.43, 139.84, 139.59, 134.34, 133.80, 132.81, 131.20, 129.65, 129.55, 128.41, 125.81, 123.55, 118.24, 113.08, 39.63, 27.34, 21.37\); HRMS (ESI) m/z calculated for \(C_{19}H_{20}N_2O\) [M+H]\(^+\) 293.1654; found 293.1648.

\[\text{Me} \begin{array}{c} \text{NHPiv} \\ \text{Me} \begin{array}{c} \text{NO} \\ \text{3g} \end{array} \end{array} \text{CN} \text{3h} \]
(3i) N-(4-methyl-3′-phenoxy-[1,1′-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a colourless oil (64 mg, 89%); \(R_f = 0.5\) (petroleum ether/EtOAc = 10:1). Purified using a mixture of petroleum ether/EtOAc = 25:1; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.22\) (s, 1H), 7.50 (s, 1H), 7.44 (t, \(J = 8.1\) Hz, 1H), 7.37 (t, \(J = 8.1\) Hz, 2H), 7.16-7.12 (m, 2H), 7.08 (d, \(J = 7.6\) Hz, 1H), 7.06-7.04 (m, 3H), 6.99 (s, 1H), 6.97 (d, \(J = 7.6\) Hz, 1H), 2.39 (s, 3H), 1.14 (s, 9H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 176.30, 158.12, 156.46, 139.92, 138.74, 134.73, 130.27, 129.89, 129.43, 128.69, 124.68, 123.90, 123.84, 121.45, 119.36, 119.24, 117.78, 39.80, 27.39, 21.46; HRMS (ESI) m/z calculated for C\(_{24}\)H\(_{25}\)NO\(_2\) [M+H]\(^+\) 360.1964; found 360.1958.

(3j) N-(4,4′-dimethyl-[1,1′-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (51 mg, 90%); \(R_f = 0.45\) (petroleum ether/EtOAc = 10:1). Purified using a mixture of petroleum ether/EtOAc = 20:1; \(^1\)H NMR (200 MHz, CDCl\(_3\)): \(\delta = 8.24\) (s, 1H), 7.50 (brs, 1H), 7.31-7.20 (m, 4H), 7.11 (d, \(J = 7.7\) Hz, 1H), 6.96 (d, \(J = 7.8\) Hz, 1H), 2.41 (s, 3H), 2.39 (s, 3H), 1.11 (s, 9H); \(^{13}\)C NMR (50 MHz, CDCl\(_3\)): \(\delta = 176.28, 138.20, 137.57, 134.98, 134.88, 129.62, 129.58, 129.43, 128.69, 124.56, 121.20, 39.74, 27.35, 21.43, 21.17; HRMS (ESI) m/z calculated for C\(_{19}\)H\(_{23}\)NO [M+H]\(^+\) 282.1858, found 282.1852.
(3k) \(N\)-(4'-methoxy-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (56 mg, 94%); \(R_f = 0.4\) (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 20:1; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.23\) (s, 1H), 7.48 (brs, 1H), 7.27 (d, \(J = 8.7\) Hz, 2H), 7.10 (d, \(J = 7.9\) Hz, 1H), 7.01 (d, \(J = 8.9\) Hz, 2H), 6.95 (d, \(J = 7.7\) Hz, 1H), 3.86 (s, 3), 2.39 (s, 3H), 1.12 (s, 9H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 176.34, 159.26, 138.22, 135.08, 130.62, 130.23, 129.74, 128.99, 124.62, 121.29, 114.40, 77.05, 55.37, 39.81, 27.44, 21.49\); HRMS (ESI) m/z calculated for C\(_{19}\)H\(_{23}\)NO\(_2\) \([M+H]^+\) 298.1807, found 298.1802.

(3l) \(N\)-(4'-fluoro-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (51 mg, 89%); \(R_f = 0.55\) (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 30:1; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.18\) (s, 1H), 7.35-7.30 (m, 3H), 7.17 (t, \(J = 8.7\) Hz, 2H), 7.11 (d, \(J = 7.8\) Hz, 1H), 6.98 (d, \(J = 8.8\) Hz, 1H), 2.40 (s, 3H), 1.12 (s, 9H); \(^{13}\)C NMR (50 MHz, CDCl\(_3\)): \(\delta = 176.31, 162.32\) (d, \(J_{C,F} = 248.0\) Hz), 138.67, 134.79, 134.03 (d, \(J_{C,F} = 3.7\) Hz), 131.11 (d, \(J_{C,F} = 8.0\) Hz), 129.61, 128.50, 124.83, 121.77, 115.91 (d, \(J_{C,F} = 21.3\) Hz), 39.71, 27.34, 21.42; HRMS (ESI) m/z calculated for C\(_{18}\)H\(_{20}\)FNO \([M+H]^+\) 286.1654; found 286.1648.
(3m) N-(4'-bromo-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (58 mg, 84%); $R_f = 0.45$ (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 20:1; 1H NMR (200 MHz, CDCl$_3$): $\delta = 8.15$ (s, 1H), 7.60 (d, $J = 8.6$ Hz, 2H), 7.33 (brs, 1H), 7.23 (d, $J = 8.4$ Hz, 2H), 7.09 (d, $J = 7.8$ Hz, 1H), 6.98 (d, $J = 7.8$ Hz, 1H), 2.39 (s, 3H), 1.13 (s, 9H); 13C NMR (50 MHz, CDCl$_3$): $\delta = 176.31$, 138.87, 137.09, 134.55, 132.04, 131.03, 129.48, 128.42, 125.02, 122.13, 121.98, 39.72, 27.37, 21.41; HRMS (ESI) m/z calculated for C$_{18}$H$_{20}$BrNO [M+H]$^+$ 346.0807, found 346.0801.

(3n) N-(4-methyl-4'-nitro-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (49 mg, 78%); $R_f = 0.5$ (petroleum ether/EtOAc = 15:2), Purified using a mixture of petroleum ether/EtOAc = 15:1; 1H NMR (200 MHz, CDCl$_3$): $\delta = 8.32$ (d, $J = 9.0$ Hz, 2H), 7.99 (s, 1H), 7.55 (d, $J = 8.8$ Hz, 2H), 7.23 (brs, 1H), 7.16 (d, $J = 7.8$ Hz, 1H), 7.06 (d, $J = 7.8$ Hz, 1H), 2.41 (s, 3H), 1.14 (s, 9H); 13C NMR (50 MHz, CDCl$_3$): $\delta = 176.45$, 147.14, 145.45, 139.91, 134.55, 132.04, 131.02, 129.54, 128.53, 125.83, 123.96, 123.66, 39.64, 27.35, 21.37; HRMS (ESI) m/z calculated for C$_{18}$H$_{20}$N$_2$O$_3$ [M+H]$^+$ 313.1552; found 313.1546.

(3o) N-(4'-cyano-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide
The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a colourless oil (48 mg, 82%); Rf = 0.45 (petroleum ether/EtOAc = 10:1); Purified using a mixture of petroleum ether/EtOAc = 20:1; 1H NMR (500 MHz, CDCl3): δ = 8.02 (s, 1H), 7.76 (d, J = 7.9 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.20 (brs, 1H), 7.12 (d, J = 7.6 Hz, 1H), 7.04 (d, J = 7.7 Hz, 1H), 2.40 (s, 3H), 1.13 (s, 9H); 13C NMR (126 MHz, CDCl3): δ = 176.40, 143.40, 139.71, 134.27, 132.54, 130.13, 129.45, 128.70, 125.69, 123.33, 118.49, 111.53, 39.66, 27.34, 21.39; HRMS (ESI) m/z calculated for C19H20N2O [M+H]⁺ 293.1654; found 293.1648.

(4a) N-(4'-chloro-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure (in gram-scale) described above and purified by column chromatography to give the product as a light yellow solid (2.36 gm, 82%); Rf = 0.45 (petroleum ether/EtOAc = 10:1); Purified using a mixture of petroleum ether/EtOAc = 25:1; 1H NMR (400 MHz, CDCl3): δ = 8.29 (d, J = 8.2 Hz, 1H), 7.49-7.46 (m, 2H), 7.40-7.34 (m, 2H), 7.33-7.30 (m, 2H), 7.21 (dd, J = 7.8, 1.8 Hz, 1H), 7.19-7.15 (m, 1H), 1.13 (s, 1H); 13C NMR (101 MHz, CDCl3): δ = 176.30, 136.56, 134.90, 134.10, 131.21, 130.66, 129.75, 129.16, 128.76, 124.22, 121.57, 39.73, 27.38; HRMS (ESI) m/z calculated for C17H18ClNO [M+H]⁺ 288.1155; found 288.1150.

(4b) N-(4'-chloro-3-isopropyl-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (55 mg, 84%); Rf = 0.45 (petroleum ether/EtOAc = 10:1); Purified using a mixture of petroleum ether/EtOAc = 25:1; 1HNMR (500 MHz, CDCl3): δ = 7.38-7.33 (m, 4H), 7.24 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 7.3 Hz, 1H), 6.75 (s, 1H), 3.05 (sep, J = 6.9 Hz, 1H), 1.25 (d, J = 6.9 Hz, 6H), 1.11 (s, 9H);
13C NMR (126 MHz, CDCl$_3$): δ = 177.27, 146.93, 139.53, 138.61, 133.17, 131.42, 130.32, 128.13, 127.81, 127.60, 125.62, 38.96, 28.54, 27.42, 23.42; HRMS (ESI) m/z calculated for C$_{20}$H$_{24}$ClNO [M+H]$^+$ 330.1625; found 330.1619.

(4c) N-(4'-chloro-3-methoxy-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (55 mg, 87%); R$_f$ = 0.4 (petroleum ether/EtOAc = 8:1); Purified using a mixture of petroleum ether/EtOAc = 20:1; 1H NMR (500 MHz, CDCl$_3$): δ = 7.30 (s, 4H), 7.26 (t, J = 8.0 Hz, 1H), 6.94 (brs, 1H), 6.91 (d, J = 8.1 Hz, 2H), 3.84 (s, 3H), 1.14 (s, 9H); 13C NMR (126 MHz, CDCl$_3$): δ = 176.71, 154.42, 139.50, 138.32, 132.90, 129.79, 128.10, 127.43, 123.21, 122.11, 110.35, 55.94, 39.08, 27.37; HRMS (ESI) m/z calculated for C$_{18}$H$_{20}$ClNO$_2$ [M+H]$^+$ 318.1261; found 318.1255.

(4d) N-(3,4'-dichloro-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (49 mg, 77%); R$_f$ = 0.45 (petroleum ether/EtOAc = 8:1); Purified using a mixture of petroleum ether/EtOAc = 20:1; 1H NMR (500 MHz, CDCl$_3$): δ = 7.43 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.5 Hz, 2H), 7.28-7.25 (m, 3H), 7.21 (d, J = 7.6 Hz, 1H), 7.05 (s, 1H), 1.14 (s, 9H); 13C NMR (126 MHz, CDCl$_3$): δ = 176.53, 141.04, 137.51, 133.56, 132.75, 131.77, 129.89, 129.04, 128.75, 128.27, 128.03, 39.14, 27.31; HRMS (ESI) m/z calculated for C$_{17}$H$_{17}$Cl$_2$NO [M+H]$^+$ 322.0765; found 322.0760.
(4e) \(N\)-(3-bromo-4'-chloro-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid \(R_f = 0.45\) (petroleum ether/EtOAc = 8:1); Purified using a mixture of petroleum ether/EtOAc = 20:1; (55 mg, 75%); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 7.61\) (d, \(J = 8.0\) Hz, 1H), 7.43 (d, \(J = 8.4\) Hz, 2H), 7.27-7.24 (m, 3H), 7.20 (t, \(J = 8.2\) Hz, 1H), 7.05 (brs, 1H), 1.13 (s, 9H); \(^1^3\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 176.27, 141.27, 137.77, 133.56, 133.15, 132.24, 129.89, 129.55, 128.45, 128.26, 123.44, 39.17, 27.31\); HRMS (ESI) m/z calculated for C\(_{17}\)H\(_{17}\)BrClNO [M+H]\(^+\) 366.0260; found 366.0255.

(4f) \(N\)-(4'-chloro-4-methoxy-[1,1'-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (62 mg, 97%); \(R_f = 0.55\) (petroleum ether/EtOAc = 8:1); Purified using a mixture of petroleum ether/EtOAc = 20:1; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.08\) (d, \(J = 2.6\) Hz, 1H), 7.46 (d, \(J = 8.4\) Hz, 2H), 7.43 (brs, 1H), 7.29 (d, \(J = 8.4\) Hz, 2H), 7.11 (d, \(J = 8.4\) Hz, 1H), 6.73 (dd, \(J = 8.4, 2.7\) Hz, 1H), 3.86 (s, 3H), 1.14 (s, 9H); \(^1^3\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 176.46, 159.93, 136.42, 136.01, 133.83, 130.91, 130.43, 129.22, 123.09, 110.91, 105.63, 55.46, 39.92, 27.40\); HRMS (ESI) m/z calculated for C\(_{18}\)H\(_{20}\)ClNO\(_2\) [M+H]\(^+\) 318.1261; found 318.1255.

(4g) \(N\)-(4'-chloro-4-fluoro-[1,1'-biphenyl]-2-yl)pivalamide
The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (57 mg, 94%); Rf = 0.55 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 25:1; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.21\) (d, \(J = 11.1\) Hz, 1H), 7.48 (d, \(J = 8.4\) Hz, 2H), 7.44 (s, 1H), 7.28 (d, \(J = 7.9\) Hz, 2H), 7.15 (t, \(J = 7.8\) Hz, 1H), 6.84 (t, \(J = 7.8\) Hz, 1H), 1.12 (s, 9H); \(^1\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 176.31, 162.52\) (d, \(J_{C-F} = 245.2\) Hz), 136.34 (d, \(J_{C-F} = 11.6\) Hz), 135.61, 134.33, 130.74, 130.66 (d, \(J_{C-F} = 10.3\) Hz), 129.34, 126.36 (d, \(J_{C-F} = 3.1\) Hz), 110.62 (d, \(J_{C-F} = 21.8\) Hz), 108.23 (d, \(J_{C-F} = 27.6\) Hz), 39.83, 27.25; HRMS (ESI) m/z calculated for C\(_{17}\)H\(_{17}\)ClFNO \([M+H]^+\) 306.1061; found 306.1055.

(4h) \(N\)-(4-bromo-4’-chloro-[1,1’-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (58 mg, 79%); Rf = 0.4 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 20:1; \(^1\)H NMR (200 MHz, CDCl\(_3\)): \(\delta = 8.61\) (d, \(J = 2.0\) Hz, 1H), 7.48 (d, \(J = 8.6\) Hz, 2H), 7.36 (brs, 1H), 7.32-7.26 (m, 3H), 7.06 (d, \(J = 8.2\) Hz, 1H), 1.12 (s, 9H); \(^1\)C NMR (50 MHz, CDCl\(_3\)): \(\delta = 176.35, 136.05, 135.45, 134.54, 130.84, 130.50, 129.56, 129.41, 127.05, 123.97, 122.53, 39.84, 27.30\); HRMS (ESI) m/z calculated for C\(_{17}\)H\(_{17}\)BrClNO \([M+H]^+\) 366.0260; found 366.0255.

(4i) \(N\)-(4,4’,5-trichloro-[1,1’-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (48 mg, 68%); Rf = 0.55 (petroleum ether/EtOAc = 8:1), Purified using a mixture of petroleum ether/EtOAc = 15:1; \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.57\) (s, 1H), 7.50 (d, \(J = 8.6\) Hz, 2H), 7.34 (s, 1H),
7.29-7.27 (m, 3H), 1.12 (s, 9H); 13C NMR (126 MHz, CDCl$_3$): δ = 176.34, 135.03, 134.35, 134.22, 132.52, 130.76, 130.56, 130.42, 129.56, 127.18, 122.71, 39.85, 27.25; HRMS (ESI) m/z calculated for C$_{17}$H$_{15}$ClNO [M+H]$^+$ 356.0376; found 356.0370.

(4j) N-(4’-chloro-4-nitro-[1,1’-biphenyl]-2-yl)pivalamide
The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (33 mg, 49%); R$_f$ = 0.6 (petroleum ether/EtOAc = 5:1), Purified using a mixture of petroleum ether/EtOAc = 15:1; 1H NMR (500 MHz, CDCl$_3$): δ = 9.24 (s, 1H), 7.99 (d, J = 6.9 Hz, 1H), 7.55-7.53 (m, 3H), 7.37-7.32 (m, 3H), 1.15 (s, 9H); 13C NMR (126 MHz, CDCl$_3$): δ = 176.61, 147.98, 136.76, 136.14, 135.53, 134.48, 130.45, 130.25, 129.77, 118.71, 116.26, 77.07, 39.98, 27.29; HRMS (ESI) m/z calculated for C$_{17}$H$_{17}$ClN$_2$O$_3$ [M+H]$^+$ 333.1006; found 333.1000.

(4k) N-(4’-chloro-5-ethyl-[1,1’-biphenyl]-2-yl)pivalamide
The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (54 mg, 85%); R$_f$ = 0.5 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 25:1; 1H NMR (200 MHz, CDCl$_3$): δ = 8.15 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 8.6 Hz, 2H), 7.35-7.26 (m, 3H), 7.22 (dd, J = 8.4, 2.2 Hz, 1H), 7.05 (d, J = 2.2 Hz, 1H), 2.65 (q, J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H), 1.13 (s, 9H); 13C NMR (50 MHz, CDCl$_3$): δ = 176.23, 140.38, 136.89, 133.94, 132.48, 131.43, 130.67, 129.14, 129.07, 128.13, 121.91, 39.65, 28.26, 27.42, 15.62; HRMS (ESI) m/z calculated for C$_{19}$H$_{22}$ClN$_2$O$_3$ [M+H]$^+$ 316.1468; found 316.1462.
N-(4’-chloro-5-methoxy-[1,1’-biphenyl]-2-yl)pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (59 mg, 93%); R\textsubscript{f} = 0.45 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 20:1; 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta = 8.02\) (d, \(J = 8.9\) Hz, 1H), 7.45 (d, \(J = 8.3\) Hz, 2H), 7.30 (d, \(J = 8.5\) Hz, 2H), 7.15 (brs, 1H), 6.92 (dd, \(J = 9.1, 3.1\) Hz, 1H), 6.77 (d, \(J = 3.2\) Hz, 1H), 3.81 (s, 3H), 1.13 (s, 9H); 13C NMR (126 MHz, CDCl\textsubscript{3}): \(\delta = 176.30, 156.34, 136.65, 134.05, 133.63, 130.49, 128.99, 127.90, 124.19, 115.27, 113.56, 55.49, 39.45, 27.40\); HRMS (ESI) m/z calculated for C\textsubscript{18}H\textsubscript{20}ClNO\textsubscript{2} [M+H]+ 318.1261; found 318.1255.

4’-chloro-6-pivalamido-[1,1’-biphenyl]-3-yl pivalate

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (61 mg, 79%); R\textsubscript{f} = 0.55 (petroleum ether/EtOAc = 8:1), Purified using a mixture of petroleum ether/EtOAc = 15:1; 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta = 8.31\) (d, \(J = 8.9\) Hz, 1H), 7.47 (d, \(J = 8.5\) Hz, 2H), 7.33 (d, \(J = 8.6\) Hz, 2H), 7.30 (brs, 1H), 7.08 (dd, \(J = 8.9, 2.7\) Hz, 1H), 6.95 (d, \(J = 2.7\) Hz, 1H), 1.35 (s, 9H), 1.13 (s, 9H); 13C NMR (126 MHz, CDCl\textsubscript{3}): \(\delta = 177.12, 176.27, 147.09, 135.75, 134.47, 132.46, 132.23, 130.64, 129.26, 122.71, 122.58, 121.60, 39.74, 39.06, 27.40, 27.12\); HRMS (ESI) m/z calculated for C\textsubscript{22}H\textsubscript{26}ClNO\textsubscript{3} [M+H]+ 388.1679; found 388.1674.

N-(4’-chloro-5-fluoro-[1,1’-biphenyl]-2-yl)pivalamide

(4n)
The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (2.04 gm, 87%); \(R_f = 0.5\) (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 20:1; \(^1H\) NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.14\) (dd, \(J = 9.1, 3.7\) Hz, 1H), 7.46 (d, \(J = 8.4\) Hz, 2H), 7.29 (d, \(J = 8.4\) Hz, 2H), 7.25 (brs, 1H), 7.05 (dt, \(J = 8.4, 3.5\) Hz, 1H), 6.93 (dd, \(J = 8.8, 3.0\) Hz, 1H), 1.12 (s, 9H); \(^13C\) NMR (126 MHz, CDCl\(_3\)): \(\delta = 176.33, 159.10\) (d, \(J_{C-F} = 245.2\) Hz), 135.55, 134.52, 133.60 (d, \(J_{C-F} = 7.6\) Hz), 130.90, 130.39, 129.21, 124.04 (d, \(J_{C-F} = 8.6\) Hz), 116.43 (d, \(J_{C-F} = 23.0\) Hz), 115.13 (d, \(J_{C-F} = 20.9\) Hz), 39.55, 27.31; HRMS (ESI) m/z calculated for \(C_{17}H_{17}ClFNO\) [M+H]\(^+\) 306.1061; found 306.1055.

(4o) \(N-(4',5\text{-dichloro-[1,1'-biphenyl]-2-yl})\) pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (53 mg, 83%); \(R_f = 0.5\) (petroleum ether/EtOAc = 8:1), Purified by using a mixture of petroleum ether/EtOAc = 15:1; \(^1H\) NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.27\) (d, \(J = 8.9\) Hz, 1H), 7.49 (d, \(J = 8.4\) Hz, 2H), 7.34 (dd, \(J = 8.7, 2.7\) Hz, 1H), 7.32-7.28 (m, 3H), 7.20 (d, \(J = 2.7\) Hz, 1H), 1.12 (s, 9H); \(^13C\) NMR (126 MHz, CDCl\(_3\)): \(\delta = 176.30, 135.23, 134.69, 133.60, 132.62, 130.48, 129.46, 129.38, 129.14, 128.61, 122.77, 39.77, 27.33\); HRMS (ESI) m/z calculated for \(C_{17}H_{17}Cl_2NO\) [M+H]\(^+\) 322.0765; found 322.0760.

(4p) \(N-(5\text{-bromo-4'}-\text{chloro-[1,1'-biphenyl]-2-yl})\) pivalamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (59 mg, 81%); \(R_f = 0.45\) (petroleum ether/EtOAc = 8:1), Purified using a mixture of petroleum ether/EtOAc = 15:1; \(^1H\) NMR (200 MHz, CDCl\(_3\)): \(\delta = 8.23\) (d, \(J = 8.8\) Hz, 1H), 7.52-7.45 (m, 3H), 7.35 (d, \(J = 2.4\) Hz, 1H), 7.32-7.26 (m, 3H), 1.11 (s, 9H); \(^13C\) NMR (50 MHz, CDCl\(_3\)): \(\delta = 176.31\),

S31
135.09, 134.73, 134.13, 132.85, 132.33, 131.59, 130.50, 129.41, 122.93, 116.75, 39.81, 27.34; HRMS (ESI) m/z calculated for C_{17}H_{17}BrClNO [M+H]^+ 366.0260; found 366.0255.

(4q) 1-(7-(4-chlorophenyl)indolin-1-yl)-2,2-dimethylpropan-1-one

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (50 mg, 81%); R\text{f} = 0.45 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 10:1; 1H NMR (500 MHz, CDCl\textsubscript{3}): \text{\delta} = 7.33 (s, 4H), 7.23 (d, J = 7.2 Hz, 1H), 7.18-7.14 (m, 2H), 4.20 (t, J = 7.6 Hz, 2H), 3.12 (t, J = 7.6 Hz, 2H), 1.19 (s, 9H); 13C NMR (126 MHz, CDCl\textsubscript{3}): \text{\delta} = 177.28, 141.79, 140.03, 134.76, 132.35, 131.87, 128.48, 128.43, 127.88, 125.11, 123.52, 50.63, 39.73, 31.09, 28.01; HRMS (ESI) m/z calculated for C\textsubscript{19}H\textsubscript{21}ClNO [M+H]^+ 314.1312; found 314.1306.

(4r) 1-(7-(4-chlorophenyl)-2-methylindolin-1-yl)-2,2-dimethylpropan-1-one

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a brown solid (58 mg, 89%); R\text{f} = 0.5 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 10:1; 1H NMR (500 MHz, CDCl\textsubscript{3}): \text{\delta} = 7.38 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 6.6 Hz, 1H), 7.21-7.17 (m, 2H), 4.78 (quin, J = 6.6 Hz, 1H), 3.33 (dd, J = 14.9, 6.7 Hz, 1H), 2.62 (d, J = 14.9 Hz, 1H), 1.43 (d, J = 6.2 Hz, 3H), 1.20 (s, 9H); 13C NMR (126 MHz, CDCl\textsubscript{3}): \text{\delta} = 177.15, 140.74, 139.76, 134.47, 133.56, 132.36, 128.42, 127.90, 127.85, 125.58, 124.18, 57.03, 40.04, 38.28, 38.52, 20.59; HRMS (ESI) m/z calculated for C\textsubscript{20}H\textsubscript{23}ClNO [M+H]^+ 328.1468; found 328.1463.
(4s) 1-(8-(4-chlorophenyl)-3,4-dihydroquinolin-1(2H)-yl)-2,2-dimethylpropan-1-one
The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a colourless oily liquid (55 mg, 84%); Rf = 0.45 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 10:1; 1H NMR (500 MHz, CDCl3): δ = 7.35-7.31 (m, 7H), 4.40 (s, 1H), 3.40 (s, 1H), 2.85-2.76 (m, 2H), 2.16 (s, 1H), 2.04 (s, 1H), 1.10 (s, 9H); 13C NMR (126 MHz, CDCl3): δ = 176.60, 139.17, 138.80, 137.83, 133.77, 132.31, 129.77, 127.89, 127.82, 127.60, 125.75, 45.15, 39.02, 28.10, 25.73, 24.74; HRMS (ESI) m/z calculated for C20H23ClNO [M+H]+ 328.1468; found 328.1462.

(4t) 1-(8-(4-chlorophenyl)-2-methyl-3,4-dihydroquinolin-1(2H)-yl)-2,2-dimethylpropan-1-one
The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (63 mg, 92%); Rf = 0.45 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 10:1; 1H NMR (500 MHz, CDCl3): δ = 7.32 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 7.19-7.13 (m, 2H), 7.05 (d, J = 6.9 Hz, 1H), 4.64-4.61 (m, 1H), 2.90-2.79 (m, 2H), 2.18-2.11 (m, 1H), 1.80-1.77 (m, 1H), 1.30 (d, J = 6.5 Hz, 3H), 1.05 (s, 9H); 13C NMR (126 MHz, CDCl3): δ = 178.10, 139.66, 139.13, 135.67, 132.34, 131.86, 130.30, 128.09, 127.95, 127.76, 125.46, 77.07, 48.64, 39.73, 29.82, 28.26, 23.56, 18.14; HRMS (ESI) m/z calculated for C21H25ClNO [M+H]+ 342.1625; found 342.1619.
(4u) *N*-(*4*-chloro-*5*-methoxy-[1,1’-biphenyl]-2-yl)acetamide

The title compound was prepared according to the general procedure described above and purified by column chromatography to give the product as a white solid (36 mg, 65%); R_f = 0.5 (petroleum ether/EtOAc= 1:1), Purified using a mixture of petroleum ether/EtOAc= 1:1; ¹H NMR (500 MHz, CDCl₃): δ = 7.91 (d, J = 8.7 Hz, 1H), 7.44 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 6.93 (dd, J = 9.2, 2.7 Hz, 1H), 6.83 (brs, 1H), 6.78 (d, J = 2.5 Hz, 1H), 3.82 (s, 3H), 2.02 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ = 168.49, 156.76, 136.76, 134.07, 130.40, 129.09, 127.48, 125.12, 115.39, 113.70, 55.52, 24.11; HRMS (ESI) m/z calculated for C₁₅H₁₅ClNO₂ [M+H]⁺, 276.0791; found 276.0785.

(5a) *4*-chloro-[1,1’-biphenyl]-2-amine

The title compound was prepared according to the general procedure described in Sec (2.7.1) and purified by column chromatography to give the product as a light brown oil (75 mg, 93%); R_f = 0.6 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 35:1; ¹H NMR (500 MHz, CDCl₃): δ = 7.45-7.41 (m, 4H), 7.19 (dt, J = 7.7, 1.5 Hz, 1H), 7.12 (dd, J = 7.7, 1.5 Hz, 1H), 6.85 (dt, J = 7.6, 1.2 Hz, 1H), 6.78 (dd, J = 7.9, 1.0 Hz, 1H), 3.74 (brs, 2H); ¹³C NMR (126 MHz, CDCl₃): δ = 143.36, 137.85, 133.03, 130.41, 130.29, 128.94, 128.78, 126.24, 118.72, 115.68; HRMS (ESI) m/z calculated for C₁₂H₁₀ClN [M+H]⁺ 204.0580; found 204.0575.

(5b) *4*-methyl-[1,1’-biphenyl]-2-amine
The title compound was prepared according to the general procedure described in Sec (2.7.1) and purified by column chromatography to give the product as a light brown oil (86 mg, 94%); Rf = 0.6 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 35:1; ¹H NMR (500 MHz, CDCl₃): δ = 7.43 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.24-7.19 (m, 2H), 6.90 (dt, J = 7.2, 0.8 Hz, 1H), 6.82 (d, J = 8.1 Hz, 1H), 3.74 (s, 2H), 2.48 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ = 143.50, 136.73, 136.45, 130.37, 129.42, 128.86, 128.22, 127.52, 118.53, 115.46, 21.11; HRMS (ESI) m/z calculated for C₁₃H₁₃N [M+H]+ 184.1126; found 184.1121

(6a) 6-(tert-butyl)-8-methoxyphenanthridine

The title compound was prepared according to the general procedure described in Sec (2.7.2) and purified by column chromatography to give the product as a white solid (50 mg, 94%); Rf = 0.6 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 35:1; ¹H NMR (200 MHz, CDCl₃): δ = 8.61 (d, J = 9.2 Hz, 1H), 8.45 (dd, J = 7.6, 2.2 Hz, 1H), 8.11 (dd, J = 7.4, 2.3 Hz, 1H), 8.01 (d, J = 2.6 Hz, 1H), 7.69-7.55 (m, 2H), 7.45 (dd, J = 9.1, 2.7 Hz, 1H), 4.01 (s, 3H), 1.75 (s, 9H); ¹³C NMR (50 MHz, CDCl₃): δ = 165.68, 157.23, 142.14, 130.20, 128.20, 127.37, 126.49, 125.46, 124.42, 123.46, 121.09, 119.09, 109.66, 55.45, 40.04, 30.95; HRMS (ESI) m/z calculated for C₁₈H₁₉NO [M+H]+ 226.1545; found 226.1539.

(6b) 6-(tert-butyl)-8-chlorophenanthridine

The title compound was prepared according to the general procedure described in Sec (2.7.2) and purified by column chromatography to give the product as a colourless liquid (48.0 mg, 89%); Rf = 0.6 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 35:1; ¹H NMR (500 MHz, CDCl₃): δ = 8.61 (d, J = 8.8 Hz, 1H), 8.59 (d, J = 2.2 Hz, 1H), 8.47 (d, J = 7.9 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 7.75-7.70 (m, 2H), 7.63 (dt, J
= 8.2, 1.2 Hz, 1H), 1.73 (s, 9H); 13C NMR (126 MHz, CDCl$_3$): δ = 165.57, 142.81, 132.37, 131.81, 130.36, 129.76, 128.68, 127.54, 126.85, 125.12, 124.62, 122.75, 121.45, 40.16, 31.11; HRMS (ESI) m/z calculated for C$_{17}$H$_{16}$ClN [M+H]$^+$ 270.1050; found 270.1044.

(7b) 3-methyl-9H-carbazole86

The title compound was prepared according to the reported literature procedure described in Sec (2.7.3) and purified by column chromatography to give the product as a colourless solid (61.0 mg, 67%); Rf = 0.6 (petroleum ether/EtOAc = 25:1). Purified using a mixture of petroleum ether/EtOAc = 10:1; 1H NMR (500 MHz, CDCl$_3$): δ = 8.05 (d, J = 7.6 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.93 (s, 1H), 7.41-7.38 (m, 2H), 7.25-7.22 (m, 2H), 7.08 (d, J = 8.0 Hz, 1H), 2.54 (s, 3H); 13C NMR (126 MHz, CDCl$_3$): δ = 139.95, 139.45, 135.99, 125.25, 123.43, 121.03, 120.96, 119.98, 119.31, 110.71, 110.45, 22.03.

(8) 9-chloro-6,7-diphenyl-7H-dibenzo[b,d]azepine86

The title compound was prepared according to the reported literature procedure described in Sec (2.7.4) and purified by column chromatography to give the product as a colourless solid (82 mg, 72%); Rf = 0.5 (petroleum ether/EtOAc = 10:1), Purified using a mixture of petroleum ether/EtOAc = 20:1; 1H NMR (500 MHz, CDCl$_3$): δ = 8.09 (dd, J = 7.6, 2.2 Hz, 2H), 7.69 (d, J = 8.2 Hz, 1H), 7.54-7.51 (m, 3H), 7.48-7.45 (m, 2H), 7.41 (d, J = 8.6 Hz, 1H), 7.25 (d, J = 8.3 Hz, 1H), 7.17 (t, J = 8.6 Hz, 1H), 6.99 (t, J = 8.6 Hz, 1H), 6.95-6.92 (m, 3H), 6.78-6.76 (m, 2H), 6.00 (s, 1H); 13C NMR (126 MHz, CDCl$_3$): δ = 165.70, 146.08, 140.10, 139.96, 136.54, 135.32, 134.26, 130.97, 130.61, 129.65, 129.32, 128.76, 128.36, 128.00, 127.87, 127.78, 127.63, 126.55, 126.41, 126.28, 124.29, 53.32.
(1d) N-(2-chlorophenyl-6-d)pivalamideS7

The title compound was prepared according to the reported literature procedure described in Sec (2.7.2) and purified by column chromatography to give the product as a white solid. 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta = 8.44\) (d, \(J = 7.7\) Hz, 0.14H), 8.04 (s, 1H), 7.38 (d, \(J = 8.0\) Hz, 1H), 7.31-7.28 (m, 1H), 7.05 (t, \(J = 8.0\) Hz, 1H), 1.37 (s, 9H).

\[\text{N} \text{Cl} \text{N} \text{H} \text{O} \text{Cl} \]

2-Chloro-N-(4'-chloro-[1,1'-biphenyl]-2-yl)nicotinamide (10)

The title compound was prepared according to the reported literature procedure.S8

Yield: 104 mg, (81%); 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta = 8.42\) (d, \(J = 4.6\) Hz, 1H), 8.39 (d, \(J = 8.4\) Hz, 1H), 8.17 (s, 1H), 8.11 (d, \(J = 7.6\) Hz, 1H), 7.47-7.44 (m, 1H), 7.43 (d, \(J = 8.4\) Hz, 2H), 7.35-7.32 (m, 3H), 7.27 (d, \(J = 3.8\) Hz, 2H); 13C NMR (126 MHz, CDCl\textsubscript{3}): \(\delta = 162.48, 151.23, 146.65, 140.03, 136.23, 134.37, 134.26, 132.28, 131.05, 130.74, 130.19, 129.23, 128.83, 125.31, 122.84, 122.16; HRMS (ESI) m/z calculated for C\textsubscript{21}H\textsubscript{25}CINO [M+H]+ 343.0405; found 343.0399.

\[\text{N} \text{N} \]

4,4'-di(9H-carbazol-9-yl)-1,1'-biphenyl (12)
The title compound was prepared according to the reported literature procedure.\[S9\]
Yield: 344 mg (71%); 1H NMR (500 MHz, CDCl$_3$): δ = 8.24 (d, J = 7.6 Hz, 4H), 7.95 (d, J = 8.4 Hz, 4H), 7.75 (d, J = 8.4 Hz, 4H), 7.58 (d, J = 8.0 Hz, 4H), 7.51 (t, J = 7.6 Hz, 4H), 7.38 (t, J = 7.3 Hz, 4H); 13C NMR (126 MHz, CDCl$_3$): δ = 140.81, 139.24, 137.24, 128.48, 127.46, 126.01, 123.49, 120.37, 120.07, 109.81.

4. **References**

5. Copy of 1H and 13C NMR Spectra

1H NMR of 3a

13C NMR of 3a
1H NMR of 3b

13C NMR of 3b
1H NMR of 3c

13C NMR of 3c
H NMR of 3d

13C NMR of 3d
1H NMR of 3e

1C NMR of 3e
\(^1H \) NMR of 3g

\(^{13}C \) NMR of 3g
\[\text{Me} \quad \text{NHPiv} \]

\[(3h) \]

\[\text{CN} \]

\[1^\text{H} \text{ NMR of } 3h \]

\[1^\text{C} \text{ NMR of } 3h \]
1H NMR of 3i

13C NMR of 3i
H NMR of 3k

\[
\text{Chemical Shift (ppm)}
\]

\[
1^H \text{ NMR of 3k}
\]

\[
\text{Chemical Shift (ppm)}
\]

\[
13^C \text{ NMR of 3k}
\]
1H NMR of 3m

13C NMR of 3m
$\text{H NMR of } \text{3o}$

$\text{C NMR of } \text{3o}$
1H NMR of 4a

13C NMR of 4a
\[\text{H NMR of 4b} \]

\[\text{C NMR of 4b} \]
1H NMR of 4g

13C NMR of 4g
$\text{Chemical Shift (ppm)}$

1H NMR of 4i

- 8.07
- 7.50
- 7.49
- 7.34
- 7.28
- 7.27

1C NMR of 4i

- 135.03
- 132.92
- 130.42
- 129.46
- 127.18
- 123.45
- 121.34
- 119.70
- 80.86
- 27.25
- 20.49
- 18.34
- 15.95
- 13.30
- 12.38
- 12.36
- 12.21
- 0.86
- 2.00
- 1.02
- 3.33

S62
1H NMR of 4j

13C NMR of 4j
1H NMR of 4k

- Chemical Shift (ppm): 1.28, 1.30, 1.28, 1.30

13C NMR of 4k

- Chemical Shift (ppm): 40.38, 40.38, 40.38, 40.38

These NMR spectra show the chemical shifts of the protons and carbon atoms in compound 4k.
1H NMR of 4p

- Chemical Shift: 1.11 ppm
- Peaks: 8.25, 7.50, 7.25

13C NMR of 4p

- Chemical Shift: 128.35 ppm
- Peaks: 135, 130, 125, 120

Structure of 4p

- Compound: NHPiv
- Chlorine (Cl)
- Bromine (Br)
1H NMR of 4q

13C NMR of 4q
1H NMR of 4r

13C NMR of 4r
1H NMR of 4s

13C NMR of 4s
1H NMR of 4t

13C NMR of 4t
\[\text{\(^1\)H NMR of 5a} \]

\[\text{\(^{13}\)C NMR of 5a} \]
\[\text{H NMR of 5b} \]

\[\text{13C NMR of 5b} \]
S77
^{1}H NMR of 6b

^{13}C NMR of 6b
1H NMR of 7a

13C NMR of 7a

(7a) Me

(7b) Me
1H NMR of \textbf{10}

13C NMR of \textbf{10}
1H NMR of 12

13C NMR of 12
Chemical Shift (ppm)

^1^H NMR of 1d

Cl \(\text{NHPiv} \)

1d (86% D)