
Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μ CHAMPs) for the detection of amyloid beta oligomers

Min Cheol Park,^{a⊥} Moojong Kim,^{a⊥} Gun Taek Lim,^b Sung Min Kang,^b Seong Soo A An,^c Tae Song Kim^a and Ji Yoon Kang^a*

- ^a Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. * E-mail: jykang@kist.re.kr
- ^b PeopleBio Inc., Seoul 06027, Republic of Korea.
- ^c Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea.
- ¹ These two authors equally contributed to this work.

Supplementary Fig. S1 MDS assay of serially diluted recombinant $A\beta_{42}$ peptides (w/o oligomerization step) using the 6-well connected PS- μ CHAMP with R-O-W-W-O-D droplet order. It shows that there is no significant difference in measured fluorescence intensities (n = 4) between different concentrations of $A\beta_{42}$ peptides during the MDS assay.