Spontaneous Transfer of Droplets across Microfluidic Laminar Interfaces

Supplementary material

Nan-Nan Deng,* Wei Wang,ab Xiao-Jie Ju,ab Rui Xie,ab and Liang-Yin Chu*abc

a School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China. E-mail: chuly@scu.edu.cn (L.-Y. Chu); Fax & Tel: +86 28 8546 0682
b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
c Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, Jiangsu 211816, China.
‡Present address: Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.

Part I. Supplementary Figures S1-S3.

Part II. Supplementary Movies S1-S5.
Part I. Supplementary Figures S1-S3:

Fig. S1. Image of collected droplets after transfer laminar interfaces.

Fig. S2. Small satellite water droplets of about 20 µm in diameter are capable of transferring the oil-oil interfaces.

Fig. S3. Movements of water droplets at oil/oil laminar interfaces: water drops partially wet the interfaces as fusiform drops.
Part II. Supplementary Movies S1-S5:

Supplementary Movie S1. Transfer of water droplets across oil-oil laminar interface.

Supplementary Movie S2. Transfer of oil droplets across oil-water laminar interface.

Supplementary Movie S3. Selective transfer of water droplets across oil-oil laminar interface.

Supplementary Movie S4. Transfer of water droplets across oil-water interface to prepare polymersomes.

Supplementary Movie S5. Transfer of water droplets across oil-oil laminar interface to prepare cell-loaded microgels.