Supplementary Information:

Tandem Emulsification for High-throughput Production of Double Emulsions

Maximilian L. Eggersdorfer1,*, Wenshan Zheng2,*, Saraf Nawar1,*, Cristina Mercandetti1, Alessandro Ofner1, Ivo Leibacher1, Stephan Koehler1, David A. Weitz1,3

1. School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
2. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
3. Department of Physics, Harvard University, Cambridge, Massachusetts, USA

Fig. S1: Effect of flow rate on the droplet diameter with a fixed ratio of inner to outer flow rate of one. The broken lines are drawn as guides to the eye.
Fig. S2: Investigation of a) inner droplet diameter and b) fraction of monodisperse double emulsions as a function of the ratio between the inner and the middle flow rate for flow-focusing devices.

Fig. S3: Volume fraction of emulsions in each nozzle as a function to the normalized distance to inlet a) and corresponding images for straight b) and circular c) devices.