Supplementary materials for

In-situ Fluorescence of Lac dye stabilized gold nanoparticles; DNA binding assay and toxicity study

Sutanuka Pattanayak, a Sharmila Chakraborty, b Md. Masud Rahaman Mollick, c Indranil Roy, c Samita Basu, d Dipak Rana, e Samiran Sona Gauri, f Dipankar Chattopadhyay, c Mukut Chakraborty *a

a Department of Chemistry, West Bengal State University, Barasat, Kolkata-700126, WB, India
b Department of Microbiology, Sammilani Mahavidyalaya, Baghajatin, E.M. Bypass, Santoshpur, Kolkata-700094, WB, India
c Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata-700009, WB, India
d Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata-700064, WB, India
e Department of Chemical and Biological Engineering, Industrial Membrane Research Institute, University of Ottawa, 161 Louis Pasteur St., Ottawa, ON, K1N 6N5, Canada
f Department of Biotechnology, IIT Kharagpur, Kharagpur-721302, West Bengal, INDIA.

* Corresponding author. Tel: +91-9830160462; Fax: +91-33-25241977
E-mail address: mukutchem@yahoo.co.in
Fig. S1 UV-Vis spectrum of Lac extract showing different absorption maxima.
Fig. S2 Differential absorption spectroscopic study of DNA-Lac interaction. New peak at 514 nm proves the formation of the complex.
Fig. S3 TEM histogram to determine average diameter of AuNPs.
Fig. S4 Energy dispersive X-ray spectrum of AuNPs.
Table S1. Tabular expression of the antimicrobial activity of Lac stabilized AuNPs on both Gram positive and Gram negative bacteria.

<table>
<thead>
<tr>
<th>ORGANISMS USED</th>
<th>Gram negative</th>
<th>Gram positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPOUND</td>
<td>Escherichia coli</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>Sterile water</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gold nanoparticles supernatant</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gold nanoparticles</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>