Supplementary Material

2,4 and 2,5-bis(benzooxazol-2′-yl)hydroquinone (DHBO) and their borate complexes: Synthesis and Optical properties

Karima Benelhadj, a Julien Massue, a and Gilles Ulrich a

 a Institut de chimie et procédés pour l’énergie, l’environnement et la santé (ICPEES), Chimie Organique pour les Matériaux, la Biologie et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France.

Contact: massue@unistra.fr, gulrich@unistra.fr

S1 General information and equipments p.2
S2 Synthetic protocols p.3
S3 1H and 13C NMR Spectra p.6
S4 Spectroscopic data p.30
S5 HRMS spectra p.32
S1 General information and equipment

All reactions were performed under a dry atmosphere of argon using standard Schlenck techniques. All chemicals were received from commercial sources (Aldrich, Alfa Aesar, Acros) and used without further purification. Dichloromethane were distilled over P₂O₅ under an argon atmosphere. Thin layer chromatography (TLC) was performed on silica gel coated with fluorescent indicator. Chromatographic purifications were conducted using 40-63 μm silica gel. All mixtures of solvents are given in v/v ratio.

1H NMR (400.1 MHz) and 13C NMR (100.5 MHz) spectra were recorded on a Bruker Advance 400 MHz spectrometer, 1H NMR (300.1 MHz) and 13C NMR (75.5 MHz) or a Bruker Advance 300 MHz spectrometer with perdeuterated solvents with residual protonated solvent signals as internal references.

Absorption spectra were recorded using a dual-beam grating Schimadzu UV-3000 absorption spectrometer with a 1 cm quartz cell. The steady-state fluorescence emission and excitation spectra were obtained by using a Horiba S2 Jobin Yvon Fluoromax 4. All fluorescence spectra were corrected. Solvents for spectroscopy were spectroscopic grade and were used as received. All fluorescence spectra were corrected.

The fluorescence quantum yield (Φ_exp) was calculated from eq (1).

\[Φ_{exp} = Φ_{ref} \times \frac{1}{I_{ref}} \times \frac{OD_{ref}}{OD} \times \frac{η^2}{η^2_{ref}} \]

I denotes the integral of the corrected emission spectrum, OD is the optical density at the excitation wavelength, and η is the refractive index of the medium. The reference systems used were: Quinine Φ= 55% in H₂SO₄ 1N, λ_exc = 366 nm for dyes emitting below 480 nm, Rhodamine 6G, Φ= 88% in ethanol λ_exc = 488 nm for dyes emitting between 480 and 570 nm and cresyl violet, Φ= 55% λ_exc = 546 nm in ethanol for dyes emitting above 570 nm.

Luminescence lifetimes were measured on an Edinburgh Instruments spectrofluorimeter equipped with a R928 photomultiplier and a PicoQuant PDL 800-D pulsed diode connected to a GwInstect GFG- 8015G delay generator. No filter was used for the excitation. Emission wavelengths were selected by a monochromator. Lifetimes were deconvoluted with FS-900 software using a light-scattering solution (LUDOX) for instrument response. The excitation source was a laser diode (λ = 320 nm).
S2 Synthetic protocols

Compound 1

To a stirred solution of 1,3-dimethoxybenzene (1.5 g, 10.8 mmol), in CH$_2$Cl$_2$ (20 ml) was added dropwise a 1.0M solution of bromine in CH$_2$Cl$_2$ (2.30 mmol) at 0 °C under argon. The reaction was stirred for 30 min and progress was monitored by TLC. The product was then washed with saturated sodium thiosulfate and concentrated under vacuum to afford the brominated intermediate as a white solid which was used without further purification. 1.6N butyl-lithium in hexane (4.0 ml, 5.60 mmol) was syringed at room temperature to a stirred solution of the brominated intermediate in anhydrous ether (30 ml) under argon. The solution was stirred for 1 min. before anhydrous DMF (6.70 mmol) was added dropwise. The formed precipitate was stirred for 5 min before 10 ml of HCl (10%) was added. The stirring was continued for a further 15 min after which the precipitate was washed with water and extracted with ether. After solvent evaporation, the crude residue was purified by recrystallization in ethanol leading to compound 1 as a crystalline white powder (66% over 2 steps).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 10.27 (s, 2H, CHO), 8.34 (s, 1H, H$_a$), 6.45 (s, 1H), 4.02 (s, 6H, CH$_3$). 13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 187.7, 167.5, 132.1, 119.0, 94.4, 56.3. ESI-HRMS calcd for C$_{10}$H$_{11}$O$_4$: 195.0652 (M+H) found 195.0643 (M+H).

Compound 6

To a solution of p-dimethoxybenzene (1.40 g, 10 mmol) and N,N,N’,N’-tetramethylethylenediamine (7.5 ml, 50 mmol) in diethyl ether (40 ml) was added n-butyllithium (1.6M solution in hexane, 32 ml, 50 mmol) at 0 °C under argon. The mixture was then refluxed for 24h. After the mixture was cooled down to room temperature, N,N-dimethylformamide (5 ml, 55 mmol) was added to the mixture, which was stirred overnight at room temperature. After addition of water (25 ml), the mixture was extracted with chloroform. The organic layer was dried over anhydrous MgSO$_4$, filtered, and concentrated under vacuum to give a brown oil which was further purified by recrystallization from dichloromethane/pentane to afford compound 6 (46%).

1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 10.50 (s, 2H, CHO), 7.46 (s, 2H), 3.94 (s, 6H, CH$_3$). 13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 189.4, 155.9, 129.3, 111.1, 56.4.

General procedures for the synthesis of DHBO 2, 3 and 7

To a solution of 5-substituted-2-aminophenol in methanol was added 1 equiv. of the appropriate benzaldehyde 1 or 6, 1 equiv. of phenylboronic acid and 3 equiv. of potassium cyanide. The mixture was stirred for 24 h at rt. After solvent evaporation, the crude residue was purified by silica gel chromatography eluting with CH$_2$Cl$_2$/Pet. Ether leading to the corresponding DHBO.

DHBO 2

85%. 1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 8.97 (s, 1H), 7.87 (d, 2H, 3J$_{1-2}$ = 1.8 Hz), 7.51 (d, 2H, 3J$_{2-3}$ = 8.5 Hz), 7.40 (d, 2H, 3J$_{1-2}$ = 8.5 Hz, 4J$_{2-3}$ = 1.8 Hz), 6.72 (s, 1H), 4.13 (s, 6H, CH$_3$), 1.39 (s, 18H, tBu). 13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 162.0, 160.8, 148.3,
147.9, 142.3, 134.1, 122.6, 116.8, 109.6, 109.6, 96.3, 56.6, 35.1, 31.9. ESI-MS calcd C_{30}H_{33}N_{2}O_{4}: 485.2435 (M+H), found 485.2380 (M+H).

DHBO 3

\[\text{4} \]

94%. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta (ppm) = 9.02 (s, 1H), 8.01 (br s, 2H), 7.71 (d, 2H, \(^3\)J\(_{2,1} = 8.4\) Hz), 7.64 (d, 2H, \(^3\)J\(_{1,2} = 8.4\) Hz, \(^4\)J\(_{1,3} = 1.2\) Hz), 6.75 (s, 1H), 4.17 (s, 6H, CH\(_3\)). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta (ppm) = 162.9, 162.4, 152.1, 152.1, 142.5, 134.8, 129.8, 128.0, 127.6, 127.2, 126.8, 126.2, 124.9, 122.6, 122.4, 122.4, 122.3, 122.3, 118.0, 117.9, 117.9, 117.8, 111.0, 109.0, 96.4, 56.8. ESI-MS calcd C_{24}H_{15}F_{6}N_{2}O_{4}: 509.0931 (M+H), found 509.0925 (M+H).

DHBO 4

\[\text{5} \]

80%. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta (ppm) = 7.87 (br s, 4H), 7.51 (d, 2H, \(^3\)J\(_{2,1} = 8.6\) Hz), 7.42 (d, 2H, \(^3\)J\(_{1,2} = 8.6\) Hz, \(^4\)J\(_{1,3} = 1.9\) Hz), 4.08 (s, 6H, CH\(_3\)), 1.38 (s, 18H, \(t\)-Bu). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta (ppm) = 160.9, 152.3, 148.6, 148.2, 142.0, 123.3, 119.5, 117.0, 114.9, 109.8, 57.1, 35.0, 31.8.

General procedures for the synthesis of DHBO 4, 5 and 8

BBr\(_3\) 1M (4 equiv.) was added dropwise to a Schlenck tube containing a solution of DHBO 2, 3 or 7 in CH\(_2\)Cl\(_2\). The mixture was stirred at rt overnight in the dark. Water (20 ml) was then added and the reaction mixture was extracted several times with CH\(_2\)Cl\(_2\). The combined organic phases were dried over MgSO\(_4\), filtered, and concentrated under vacuum to afford DHBO 4, 5 or 8 as grey solids.

DHBO 5

\[\text{6} \]

73%. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta (ppm) = 12.02 (br s, 2H, OH), 8.68 (s, 1H), 7.73 (d, 2H, \(^3\)J\(_{2,1} = 1.8\) Hz), 7.54 (d, 2H, \(^3\)J\(_{2,1} = 8.7\) Hz), 7.44 (d, 2H, \(^3\)J\(_{1,2} = 8.7\) Hz, \(^4\)J\(_{1,3} = 1.9\) Hz), 6.80 (s, 1H), 1.41 (s, 18H, \(t\)-Bu). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta (ppm) = 163.1, 162.6, 148.9, 147.2, 140.0, 126.9, 123.1, 115.8, 109.8, 104.8, 104.7, 35.2, 31.9. ESI-MS calcd C_{28}H_{28}N_{2}O_{4}: 457.21 (M+H), found 457.27 (M+H).

DHBO 6

\[\text{7} \]

69%. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta (ppm) = 11.70 (br s, 2H, OH), 8.72 (s, 1H), 8.01 (s, 2H), 7.74 (d, 2H, \(^3\)J\(_{2,1} = 8.6\) Hz), 7.68 (d, 2H, \(^3\)J\(_{1,2} = 8.6\) Hz), 6.83 (s, 1H). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta (ppm) = 163.9, 163.8, 150.9, 150.9, 140.3, 128.5, 127.8, 125.9, 122.9, 122.8, 122.8, 122.3, 117.0, 117.0, 116.9, 116.9, 111.2, 105.3, 104.2. ESI-MS calcd C_{23}H_{12}F_{6}N_{2}O_{4}: 481.0618 (M+H), found 481.0604 (M+H).

DHBO 7

\[\text{8} \]

88%. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta (ppm) = 12.45 (br s, 2H, OH), 7.62 (br s, 4H), 7.22 (d, 2H, \(^3\)J\(_{2,1} = 8.7\) Hz), 7.41 (d, 2H, \(^3\)J\(_{1,2} = 8.7\) Hz), 1.38 (s, 18H, \(t\)-Bu). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta (ppm) = 160.9, 152.3, 148.6, 148.2, 142.0, 123.3, 119.5, 117.0, 114.9, 109.8, 57.1, 35.0, 31.8. ESI-HRMS Calcd. for C_{28}H_{28}N_{2}O_{4}: 457.2122 (M+H), found 457.2136 (M+H).
Borate complex 9

To a stirred solution of DHPO 4 in freshly distilled 1,2-dichloroethane, BF$_3$.Et$_2$O (6 equiv.) was syringed under argon. After 5 min., N,N-Diisopropylethylamine (DIEA) (6 equiv.) was added and the resulting mixture stirred at 40 ºC for 1 h. The crude solution was filtered through a column of basic Al$_2$O$_3$, eluting with CH$_2$Cl$_2$, to afford clean complex 9 as a white powder after evaporation of the solvents in vacuo (64%).1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 8.66 (s, 2H), 7.93 (s, 2H), 7.66 (s, 4H), 6.96 (s, 2H), 1.42 (s, 18H, tBu).13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 165.5, 160.4, 152.4, 147.0, 130.7, 125.9, 125.7, 113.7, 111.0, 109.2, 101.8, 35.7, 31.7. HRMS (ESI) Calcd. for C$_{28}$H$_{26}$B$_2$F$_4$K$_1$N$_2$O$_4$: 591.1656 (M + K), found: 591.1649 (M + K).

General Procedure for the synthesis of borate complexes 10-12

To a stirred solution of the corresponding DHBO in toluene (0.1 mL/mg), BPh$_3$ (6 equivalents) was added as a powder under argon. The resulting mixture was stirred at 60°C for 1 hour. The crude solution was then filtered through a column of basic Al$_2$O$_3$, eluting with CH$_2$Cl$_2$ and the solvents were evaporated in vacuo. Pure BPh$_3$ DHBO borate complexes 10-12 were obtained as white powders after recrystallisation in pentane or cyclohexane.

Borate complex 10

62%.1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 8.35 (s, 1H), 7.54 (d, 2H, 3J$_{2-1}$ = 8.8 Hz), 7.44 (d, 2H, 3J$_{1-2}$ = 8.8 Hz), 7.47-7.43 (m, 12H, CH Ar), 7.29-7.24 (m, 8H, CH Ar), 6.95 (s, 1H), 6.92 (d, 2H, 4J$_{1-3}$ = 1.2 Hz), 1.16 (s, 18H, tBu).13C NMR (100 MHz, CDCl$_3$) δ (ppm) = 169.3, 160.2, 150.7, 147.1, 133.1, 133.0, 128.8, 127.4, 127.3, 127.2, 127.0, 126.1, 123.9, 114.4, 110.3, 109.6, 102.5, 35.1, 31.3. HRMS (ESI) Calcd. for C$_{52}$H$_{46}$B$_2$K$_1$N$_2$O$_4$: 823.3292 (M + K), found: 823.3286 (M + K).

Borate complex 11

93%.1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 8.44 (s, 1H), 7.77 (d, 2H, 3J$_{2-1}$ = 8.6 Hz), 7.71 (d, 2H, 3J$_{1-2}$ = 8.6 Hz, 4J$_{1-3}$ = 1.2 Hz), 7.42-7.38 (m, 8H, CH Ar), 7.31-7.27 (m, 12H, CH Ar), 7.22 (br s, 2H), 6.95 (s, 1H).13C NMR (100 MHz, CDCl$_3$) δ (ppm) = 170.3, 161.8, 150.6, 134.8, 133.6, 133.0, 131.2, 129.8, 129.2, 128.4, 128.1, 127.8, 127.6, 127.5, 124.1, 115.3, 112.1, 109.9, 102.2. HRMS (ESI) Calcd. for C$_{46}$H$_{28}$B$_2$F$_6$NaN$_2$O$_4$: 831.2046 (M + Na), found: 831.1951 (M + Na).

Borate complex 12

58%.1H NMR (300 MHz, CDCl$_3$) δ (ppm) = 7.65 (s, 2H), 7.62 (d, 2H, 3J$_{2-1}$ = 8.9 Hz), 7.51 (d, 2H, 3J$_{1-2}$ = 8.7 Hz, 4J$_{1-3}$ = 1.8 Hz), 7.44-7.40 (m, 8H, CH Ar), 7.27-7.23 (m, 12H, CH Ar), 6.89 (d, 2H, 4J$_{1-3}$ = 1.8 Hz), 1.43 (s, 18H, tBu).13C NMR (75 MHz, CDCl$_3$) δ (ppm) = 160.1, 154.3, 151.2, 147.8, 134.8, 133.8, 133.3, 128.1, 127.5, 127.0, 125.2, 116.4, 116.1, 114.9, 111.0, 35.3, 31.4, 27.1. HRMS (ESI) Calcd. for C$_{52}$H$_{46}$B$_2$K$_1$N$_2$O$_4$: 823.3292 (M + K), found: 823.3278 (M + K).
S3 1H and 13C NMR Spectra

RMN 1H (CDCl$_3$, 300MHz) 1
RMN 13C (CDCl$_3$, 75MHz)
RMN 1H (CDCl$_3$, 300MHz) 2
RMN 1H (CDCl$_3$, 300MHz) 3
RMN 13C (CDCl$_3$, 75MHz)
RMN 1H (CDCl$_3$, 300MHz) 4
RMN 13C (CDCl$_3$, 75MHz)
RMN 1H (CDCl$_3$, 300MHz) 5
RMN 13C (CDCl$_3$, 75MHz) 5
RMN 1H (CDCl$_3$, 300MHz) 6
$\text{RMN }^{13}\text{C} (\text{CDCl}_3, 75\text{MHz})$
RMN 1H (CDCl$_3$, 300MHz)
RMN 13C (CDCl$_3$, 75MHz)
RMN 13C (CDCl$_3$, 75MHz)
RMN 1H (CDCl$_3$, 300MHz) 9
RMN 13C (CDCl$_3$, 75MHz)
RMN 1H (CDCl$_3$, 400MHz) 10
RMN 13C (CDCl$_3$, 100MHz) 10
RMN 1H (CDCl$_3$, 300MHz) 11
RMN 13C (CDCl$_3$, 100MHz) 11
RMN 1H (CDCl$_3$, 300MHz) 12
S4 Spectroscopic data

Fig S4.1 Excitation (red) and emission (blue) of DHBO dye 4 in the solid-state (KBr pellet)

Fig S4.2 Excitation (red) and emission (blue) of DHBO dye 8 in the solid-state (KBr pellet)
Fig S4.3 Emission of DHBO dyes 9 (red), 10 (purple) and 11 (blue) in the solid-state (KBr pellet)
Mass Spectrum Molecular Formula Report

Analysis Info
- Analysis Name: D:\Data\Service masse 2015/037735SK.d
- Method: esi low pos.m
- Sample Name: KB379
- Comment
- Acquisition Date: 11/19/2015 9:07:26 AM
- Operator: Administrator
- Instrument: microOTOF 66

Acquisition Parameter
- Source Type: ESI
- Scan Range: n/a
- Scan Begin: 50 m/z
- Scan End: 3000 m/z
- Ion Polarity: Positive
- Capillary Exit: 80.0 V
- Hexapole RF: 68.0 V
- Skimmer 1: 50.0 V
- Skimmer 1: 24.3 V
- Set Corrector Fill: 65 V
- Set Pulsar Pull: 817 V
- Set Pulsar Push: 817 V
- Set Reflector: 1700 V
- Set Flight Tube: 8600 V
- Set Detector TOF: 2275 V

Mass Spectra
- C 10 H 11 O 4 , 195.07
- C 10 H 11 O 4 , 195.07

Chemical Formula
- Sum Formula: C 10 H 11 O 4
- Sigma: 0.01
- m/z: 195.0652
- Err (ppm): 4.38
- Mean Err (ppm): 5.50
- Rule: ok
- e-
Mass Spectrum Molecular Formula Report

Analysis Info
- Analysis Name: D:\Data\Service masse 2015\C37886SK
- Method: ESI, low pos, m
- Sample Name: KB377
- Comment:

Acquisition Date: 11/27/2015 4:25:49 PM
- Operator: N/A
- Instrument: microTOF

Parameter
<table>
<thead>
<tr>
<th>Source Type</th>
<th>Ion Polarity</th>
<th>Hexapole RF</th>
<th>Skimmer 1</th>
<th>Hexapole 1</th>
<th>Set Corrector Fill</th>
<th>Set Pulsar Pull</th>
<th>Set Pulsar Push</th>
<th>Set Reflector</th>
<th>Set Flight Tube</th>
<th>Set Detector TOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESI</td>
<td>Positive</td>
<td>60.0 V</td>
<td>50.0 V</td>
<td>24.3 V</td>
<td>74 V</td>
<td>817 V</td>
<td>810 V</td>
<td>1700 V</td>
<td>6600 V</td>
<td>2275 V</td>
</tr>
</tbody>
</table>

MS, 0.2-0.2min #(14-15)

C 30 H 33 N 2 O 4 , 485.24

<table>
<thead>
<tr>
<th>Sum Formula</th>
<th>Sigma</th>
<th>m/z</th>
<th>Err [ppm]</th>
<th>Mean Error [ppm]</th>
<th>rdb</th>
<th>N Rule</th>
<th>e^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 30 H 33 N 2 O 4</td>
<td>0.05</td>
<td>485.2435</td>
<td>11.39</td>
<td>11.50</td>
<td>15.50</td>
<td>ok</td>
<td>even</td>
</tr>
<tr>
<td>C 30 H 32 N 2 O 4</td>
<td>0.61</td>
<td>484.2357</td>
<td>1.96</td>
<td>2.27</td>
<td>16.00</td>
<td>-</td>
<td>odd</td>
</tr>
<tr>
<td>C 30 H 31 N 2 O 4</td>
<td>0.71</td>
<td>483.2278</td>
<td>-0.86</td>
<td>-8.26</td>
<td>16.50</td>
<td>ok</td>
<td>even</td>
</tr>
</tbody>
</table>
Mass Spectrum Molecular Formula Report

Analysis Info
Analysis Name: D:\Data\Service masse 2015\O
Method: esi low pos.m
Sample Name: KB383
Comment:
Acquisition Date: 11/19/2015 9:37:04 AM
Operator: Administrator
Instrument: microTOF

Acquisition Parameter
Source Type: ESI
Scan Range: n/a
Scan Begin: 50 m/z
Scan End: 3000 m/z
Ion Polarity: Positive
Capillary Exit: 80.0 V
Hexapole RF: 60.0 V
Skimmer 1: 50.0 V
Hexapole 1: 24.3 V
Set Corrector Fill: 65 V
Set Pulsar Pull: 817 V
Set Pulsar Push: 817 V
Set Reflector: 1700 V
Set Flight Tube: 8600 V
Set Detector TOF: 2275 V

+MS, 0.0-0.1min #(3-4)

C 24 H 15 F 6 N 2 O 4 \,506.08

Sum Formula	Sigma	m/z	Err [ppm]	Mean Err [ppm]	rdb	N Rule	e−
C 24 H 15 F 6 N 2 O 4 | 0.04 | 509.0931 | 1.10 | 1.81 | 15.50 | ok | even
C 24 H 14 F 6 N 2 O 4 | 0.72 | 506.0852 | -7.97 | -8.14 | 16.00 | - | odd
Service de spectrometrie de masse - Institut de Chimie - Strasbourg - UMR 7177 CNRS / UDS

Analysis Info
Analysis Name: O37665SK
desi low pos.m
Sample Name: KB352
Comment:

Acquisition Date: 10/29/2015 10:55:07 AM
Operator: Administrator
Instrument: microCTOF

Acquisition Parameter
<table>
<thead>
<tr>
<th>Source Type</th>
<th>Capillary</th>
<th>Nebulizer</th>
<th>Corona</th>
<th>ESI</th>
<th>Positive</th>
<th>Set Capillary Exit</th>
<th>Dry Gas</th>
<th>Dry Healer</th>
<th>Set Hexapole RF</th>
<th>APCI Heater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4500 V</td>
<td>0.4 Bar</td>
<td>219 nA</td>
<td>ESI</td>
<td>Positive</td>
<td>80.0 V</td>
<td>4.0 l/min</td>
<td>180 °C</td>
<td>60.0 V</td>
<td>514 °C</td>
</tr>
<tr>
<td>Scan Range</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Intensities

Bruker Daltonics DataAnalysis 3.1
printed: 11/18/2015 10:55:02 AM
Page 1 of 1
Mass Spectrum Molecular Formula Report

Analysis Info
- **Analysis Name**: D:\Data\Service masse 2015\037888SK
- **Method**: ESI low pos.m
- **Sample Name**: KS365
- **Comment**
- **Acquisition Date**: 11/30/2015 10:35:40 AM
- **Operator**: Administrator
- **Instrument**: microTOF
- **Number**: 66

Acquisition Parameter
- **Source Type**: ESI
- **Scan Range**: n/a
- **Scan Begin**: 50 m/z
- **Scan End**: 3000 m/z
- **Ion Polarity**: Positive
- **Capillary Exit**: 80.0 V
- **Hexapole RF**: 60.0 V
- **Skimmer 1**: 50.0 V
- **Hexapole 1**: 24.3 V
- **Set Corrector Fill**: 65 V
- **Set Pulsar Pull**: 917 V
- **Set Pulsar Push**: 817 V
- **Set Reflector**: 1700 V
- **Set Flight Tube**: 8800 V
- **Set Detector TOF**: 2275 V

Graphical Representation
- Mass spectrum plot with peaks at 591.1649 and 591.1655.
- Molecular formulas and errors listed:
 - C_{28}H_{26}B_{2}F_{4}K_{1}N_{2}O_{4} with errors -0.44 and -7.57.
 - C_{28}H_{25}B_{2}F_{4}K_{1}N_{2}O_{4} with errors 1.10 and -7.35.

Additional Notes
- Sigma values: 0.23 and 0.53.
- Errors in ppm: -0.44, -7.57, 1.10, -7.35.
- Rdb values: 15.50, 16.00.
- N Rule: ok, odd.
Mass Spectrum Molecular Formula Report

Analysis Info
Analysis Name: D:\Data\Service masse 2015\037756SK.d
Method: es i wide pos m
Sample Name: KB388
Comment:

Acquisition Date: 11/19/2015 11:25:51 AM
Operator: Administrator
Instrument: microTOF

Acquisition Parameter
Source Type: ESI
Ion Polarity: Positive
Set Corrector Fill: 65 V
Scan Range: m/z
Capillary Exit: 150.0 V
Set Pulsar Pull: 817 V
Scan Begin: 50 m/z
Hexapole RF: 220.0 V
Set Pulsar Push: 817 V
Scan End: 3000 m/z
Skimmer 1: 50.0 V
Hexapole 1: 24.3 V
Set Reflector: 1700 V
Set Flight Tube: 8600 V
Set Detector TOF: 2275 V

Intens.

Intensities for different m/z values.

Sum Formula	Sigma	m/z	Err [ppm]	Mean Err [ppm]	rdb	N Rule	e^-
C 52 H 46 B 2 K 1 N 2 O 4 | 0.03 | 823.3275 | -1.28 | 1.76 | 31.50 | ok | even
C 52 H 45 B 2 K 1 N 2 O 4 | 0.35 | 822.3197 | -5.79 | -5.96 | 32.00 | odd
C 52 H 47 B 2 K 1 N 2 O 4 | 0.35 | 824.3354 | 13.20 | 12.54 | 31.00 | odd
C 52 H 44 B 2 K 1 N 2 O 4 | 0.54 | 821.3119 | -14.00 | -14.04 | 32.50 | ok | even