Supporting Information

Synthesis of 1,3-dibromo-2-aryl-1H-indenes via NBS mediated unusual bromination of 2-alkynylbenzaldoximes

Raju Singha, Munmun Ghosh, Saikat Das, Dhiraj Das and Jayanta K. Ray*

Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India

* Corresponding author. Tel.: +91 3222283326; fax: +91 3222282252.

E-mail address: jkray@chem.iitkgp.ernet.in (J. K. Ray).

Table of contents

<table>
<thead>
<tr>
<th>Table of contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General..</td>
<td>2</td>
</tr>
<tr>
<td>2. General procedure...</td>
<td>2</td>
</tr>
<tr>
<td>2.1 General procedure for the synthesis of alcohols: GP-1</td>
<td>2</td>
</tr>
<tr>
<td>2.2 General procedure for the acetylation of alcohols: GP-2</td>
<td>2</td>
</tr>
<tr>
<td>3. Spectroscopic data...</td>
<td>3</td>
</tr>
<tr>
<td>4. References...</td>
<td>7</td>
</tr>
<tr>
<td>5. 1H and 13C NMR spectra.................................</td>
<td>8</td>
</tr>
</tbody>
</table>
1. General methods:

High quality reagents were purchased from Sigma Aldrich. Analytical grade commercial reagents and solvents were purified by standard procedures prior to use. Chromatographic purification was done with 60-120 mesh silica gel (Merck). For reaction monitoring, pre-coated silica gel 60 F254 sheets (Merck) were used. 1H NMR (200 MHz) spectra were recorded on a BRUCKER-AC 200 MHz spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: 7.26 ppm). Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = double doublet, bs = broad singlet), coupling constant (Hz). 13C NMR (50 MHz) spectra were recorded on a BRUKER-AC 200 MHz. Spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: 77.23 ppm). HRMS (ESI) spectra were taken using Waters Xevo G2 QTof mass spectrometer.

2. General procedures

2.1 General procedure for the synthesis of 2-alkynylbenzaldoximes: **GP-1**

All the 2-alkynylbenzaldoximes were synthesized according to the Wu groups reported procedures.¹

2.2 General procedure for the synthesis of 1,3-dibromo-2-aryl-1H-indene: **GP-2**

The 2-alkynylaldoxime (0.5 mmol) was taken in a round bottomed flask and 3 mL of dichloromethane (DCM) was added to it. Then 1.5 mmol of N-bromosuccinamide (NBS) was added in portion wise and the reaction mixture was stirred at room temperature for 30 min. After completion of the reaction, the reaction mixture was diluted with saturated aqueous solution of $\text{Na}_2\text{S}_2\text{O}_3$ and extracted with DCM (3 x 20 mL). The combined organic layer was washed with brine, dried over anhydrous Na_2SO_4, evaporated under reduced pressure. Then
the crude product was purified by column chromatography using silica gel (60-120 mesh) and hexane/EtOAc as eluent.

3. Spectroscopic data

1,3-Dibromo-2-phenyl-1H-indene (2a):

According to the GP-2 the substrate 2-(2-phenylethynyl)benzaldehyde oxime afforded the product 1,3-dibromo-2-phenyl-1H-indene (2a) as a yellow solid; Yield = 37 %; R$_f$ = 0.50 (hexane/EtOAc 50:1); 1H NMR (200 MHz, Chloroform-d) δ: 7.74–7.68 (m, 2H), 7.61-7.35 (m, 7H), 5.92 (s, 1H); 13C NMR (50 MHz, Chloroform-d) δ: 143.29, 142.17, 141.72, 132.87, 129.49, 128.95 (2C), 128.80, 128.60 (2C), 128.01, 124.90, 121.54, 120.38, 48.25. HRMS (ESI) for C$_{15}$H$_{11}$Br$_2$: Calculated 348.9222 (M$^+$+H); Found: 348.9225. The structure of the compound was also confirmed from its crystal structure which obtained by X-ray diffraction. Cell parameters: a = 16.202(2), b = 7.6187(11), c = 20.676(3), $\alpha = 90$, $\beta = 90$, $\gamma = 90$; Space group: Pbca; CCDC No. 1407752.

ORTEP Structure of compound 2a.

(CCDC 1407752)

1,3-Dibromo-2-p-tolyl-1H-indene (2b):

According to the GP-2 the substrate 2-(2-p-tolylethynyl)benzaldehyde oxime afforded the product 1,3-dibromo-2-p-tolyl-1H-indene (2b) as a yellow solid; Yield = 35 %; R$_f$ = 0.5 (hexane/EtOAc 50:1); 1H NMR (200 MHz, Chloroform-d) δ: 7.64-7.56 (m, 2H), 7.45–7.28 (m, 6H), 5.90 (s, 1H), 2.42 (s, 3H); 13C NMR (50 MHz, Chloroform-d) δ: 143.29, 142.09, 141.85, 138.89, 129.96, 129.46, 129.38 (2c), 128.83 (2c), 127.84, 124.87, 121.40, 119.65, 48.34, 21.64. HRMS (ESI) for C$_{16}$H$_{13}$Br$_2$: Calculated 362.9379 (M$^+$+H); Found: 362.9384.
1,3-Dibromo-2-(3-chlorophenyl)-1H-indene (2c):

According to the GP-2 the substrate 2-(2-(3-chlorophenyl)ethyl)benzaldehyde oxime afforded the product 1,3-dibromo-2-(3-chlorophenyl)-1H-indene (2c) as a yellow solid; Yield = 42 %; \(R_f = 0.41 \) (hexane/EtOAc 50:1); \(^1\)H NMR (200 MHz, Chloroform-d) \(\delta \): 7.71 (s, 1H), 7.61–7.55 (m, 2H), 7.48–7.35 (m, 5H), 5.87 (s, 1H); \(^{13}\)C NMR (50 MHz, Chloroform-d) \(\delta \): 142.10, 141.84, 141.38, 134.65, 134.58, 129.87, 129.60, 128.89, 128.81, 128.39, 127.12, 124.96, 121.79, 121.65, 47.91. HRMS (ESI) for C\(_{15}\)H\(_{10}\)Br\(_2\)Cl: Calculated 382.8832 (M\(^{+}\)+H); Found: 382.8835.

1,3-Dibromo-2-(3-fluorophenyl)-1H-indene (2d):

According to the GP-2 the substrate 2-(2-(3-fluorophenyl)ethyl)benzaldehyde oxime afforded the product 1,3-dibromo-2-(3-fluorophenyl)-1H-indene (2d) as a yellow solid; Yield = 46 %; \(R_f = 0.40 \) (hexane/EtOAc 50:1); \(^1\)H NMR (200 MHz, Chloroform-d) \(\delta \): 7.62–7.34 (m, 7H), 7.17–7.07 (m, 1H), 5.87 (s, 1H); \(^{13}\)C NMR (50 MHz, Chloroform-d) \(\delta \): 162.81 (CF, d, \(J = 244.5 \) Hz), 142.11, 141.94 (d, \(J = 2.5 \) Hz), 141.44, 130.22, 130.06, 129.59, 128.37, 124.95, 124.71 (d, \(J = 3.0 \) Hz), 121.78, 121.53, 115.91 (d, \(J = 24 \) Hz), 115.71 (d, \(J = 22.0 \) Hz), 47.97. HRMS (ESI) for C\(_{15}\)H\(_{10}\)Br\(_2\)F: Calculated 366.9128 (M\(^{+}\)+H); Found: 366.9130.

1,3-Dibromo-2-(4-fluorophenyl)-1H-indene (2e):

According to the GP-2 the substrate 2-(2-(4-fluorophenyl)ethyl)benzaldehyde oxime afforded the product 1,3-dibromo-2-(4-fluorophenyl)-1H-indene (2e) as a yellow solid; Yield = 45 %; \(R_f = 0.40 \) (hexane/EtOAc 50:1); \(^1\)H NMR (200 MHz, Chloroform-d) \(\delta \): 7.74–7.67 (m, 2H), 7.59 (dd, \(J = 6.8, 1.4 \) Hz, 1H), 7.47–7.36 (m, 3H), 7.23–7.15 (m, 2H), 5.87 (s, 1H); \(^{13}\)C NMR (50 MHz, Chloroform-d) \(\delta \): 162.88 (CF, d, \(J = 248 \) Hz), 142.27, 142.03, 141.57, 130.82 (2C, d, \(J = 8.5 \) Hz), 129.56, 128.97 (d, \(J = 3.0 \) Hz), 128.10, 124.92, 121.56, 120.43, 115.74 (2C, d, \(J = 21.5 \) Hz), 48.27. HRMS (ESI) for C\(_{15}\)H\(_{10}\)Br\(_2\)F: Calculated 366.9128 (M\(^{+}\)+H); Found: 366.9131.
1,3-Dibromo-2-(3,4-dichlorophenyl)-1\textit{H}-indene (2f):

According to the GP-2 the substrate 2-(2-(3,4-dichlorophenyl)ethyl)benzaldehyde oxime afforded the product 1,3-dibromo-2-(3,4-dichlorophenyl)-1\textit{H}-indene (2f) as a yellow solid; Yield = 48 %; R\textsubscript{f} = 0.33 (hexane/EtOAc 50:1); \textit{1H NMR} (200 MHz, Chloroform-d) \(\delta\): 7.83 (s, 1H), 7.61–7.36 (m, 6H), 5.83 (s, 1H); \textit{13C NMR} (50 MHz, Chloroform-d) \(\delta\): 142.05, 141.26, 140.84, 132.95, 132.88, 130.63 (3C), 129.68, 128.58, 128.17, 124.99, 122.11, 121.88, 47.70. \textbf{HRMS} (ESI) for C\textsubscript{15}H\textsubscript{9}Br\textsubscript{2}Cl\textsubscript{2}: Calculated 416.8443 (M++H); Found: 416.8449.

1,3-Dibromo-2-(3-nitrophenyl)-1\textit{H}-indene (2g):

According to the GP-2 the substrate 2-(2-(3-nitrophenyl)ethyl)benzaldehyde oxime afforded the product 1,3-dibromo-2-(3-nitrophenyl)-1\textit{H}-indene (2g) as a yellow solid; Yield = 47 %; R\textsubscript{f} = 0.20 (hexane/EtOAc 10:1); \textit{1H NMR} (200 MHz, Chloroform-d) \(\delta\): 8.60 (s, 1H), 8.25 (dd, \(J = 8.2, 1.2\) Hz, 1H), 8.05 (d, \(J = 7.8\) Hz, 1H), 7.70–7.40 (m, 5H), 5.94 (s, 1H); \textit{13C NMR} (50 MHz, Chloroform-d) \(\delta\): 148.55, 142.09, 141.10, 140.78, 134.74, 134.62, 129.75, 129.61, 128.84, 125.07, 123.76, 123.31, 123.04, 122.06, 47.61. \textbf{HRMS} (ESI) for C\textsubscript{15}H\textsubscript{10}Br\textsubscript{2}NO\textsubscript{2}: Calculated 393.9073 (M++H); Found: 393.9072.

1,3-Dibromo-2-(4-nitrophenyl)-1\textit{H}-indene (2h):

According to the GP-2 the substrate 2-(2-(4-nitrophenyl)ethyl)benzaldehyde oxime afforded the product 1,3-dibromo-2-(4-nitrophenyl)-1\textit{H}-indene (2h) as a yellow solid; Yield = 52 %; R\textsubscript{f} = 0.20 (hexane/EtOAc 10:1); \textit{1H NMR} (200 MHz, Chloroform-d) \(\delta\): 8.34 (d, \(J = 8.9\) Hz, 2H), 7.90 (d, \(J = 8.9\) Hz, 2H), 7.64–7.42 (m, 4H), 5.93 (s, 1H); \textit{13C NMR} (50 MHz, Chloroform-d) \(\delta\): 147.52, 142.25, 141.15, 141.04, 139.36, 129.83, 129.73 (2C), 129.05, 125.10, 123.89 (3C), 122.23, 47.46. \textbf{HRMS} (ESI) for C\textsubscript{15}H\textsubscript{10}Br\textsubscript{2}NO\textsubscript{2}: Calculated 393.9073 (M++H); Found: 393.9074.
1,3-Dibromo-2-(3,5-dichlorophenyl)-1H-indene (2i):

According to the GP-2 the substrate 2-(2-(3,5-dichlorophenyl)ethynyl)benzaldehyde oxime afforded the product 1,3-dibromo-2-(3,5-dichlorophenyl)-1H-indene (2j) as a yellow solid; Yield = 45 %; Rf = 0.32 (hexane/EtOAc 50:1); 1H NMR (200 MHz, Chloroform-d) δ: 7.68–7.35 (m, 7H), 5.82 (s, 1H); 13C NMR (50 MHz, Chloroform-d) δ: 142.07, 141.09, 140.58, 135.81, 135.27 (2C), 129.69, 128.75, 128.64, 127.25 (2C), 124.99, 122.85, 122.01, 47.58. HRMS (ESI) for C$_{15}$H$_9$Br$_2$Cl$_2$: Calculated 416.8443 (M$^+$+H); Found: 416.8449.

1,3-Dibromo-2-(2,6-dichlorophenyl)-1H-indene (2j):

According to the GP-2 the substrate 2-(2-(2,6-dichlorophenyl)ethynyl)benzaldehyde oxime afforded the product 1,3-dibromo-2-(2,6-dichlorophenyl)-1H-indene (2k) as a yellow solid; Yield = 34 %; Rf = 0.30 (hexane/EtOAc 50:1); 1H NMR (200 MHz, Chloroform-d) δ: 7.62–7.27 (m, 7H), 6.09 (s, 1H); 13C NMR (50 MHz, Chloroform-d) δ: 143.18, 140.48, 140.38, 136.99, 135.10, 131.73, 130.63, 129.36, 128.77, 128.44, 128.11, 126.37, 125.08, 121.77, 48.28. HRMS (ESI) for C$_{15}$H$_9$Br$_2$Cl$_2$: Calculated 416.8443 (M$^+$+H); Found: 416.8447.

1,3-Dibromo-2-(3-chloro-4-fluorophenyl)-1H-indene (2k):

According to the GP-2 the substrate 2-(2-(3-chloro-4-fluorophenyl)ethynyl)benzaldehyde oxime afforded the product 1,3-dibromo-2-(3-chloro-4-fluorophenyl)-1H-indene (2l) as a yellow solid; Yield = 50 %; Rf = 0.30 (hexane/EtOAc 50:1); 1H NMR (200 MHz, Chloroform-d) δ: 7.82 (dd, J = 7.0, 2.3 Hz, 1H), 7.65–7.29 (m, 6H), 5.87 (s, 1H); 13C NMR (50 MHz, Chloroform-d) δ: 158.13 (CF, d, J = 249.5 Hz), 142.00 (d, J = 2.0 Hz), 141.27, 140.97, 131.15, 130.16 (d, J = 3.5 Hz), 129.64, 128.91 (d, J = 7.5 Hz), 128.44, 124.95, 121.77, 121.59, 121.28, 116.85 (d, J = 21.0 Hz), 47.94. HRMS (ESI) for C$_{15}$H$_9$Br$_2$ClF: Calculated 400.8738 (M$^+$+H); Found: 400.8742.
1,3-Dibromo-6-fluoro-2-phenyl-1H-indene (2l):

According to the GP-2 the substrate 5-fluoro-2-(2-phenylethynyl)benzaldehyde oxime afforded the product 1,3-dibromo-6-fluoro-2-phenyl-1H-indene (2m) as a yellow solid; Yield = 42%;

\[R_f = 0.40 \text{ (hexane/EtOAc 50:1)} \]

\[\text{1H NMR (200 MHz, Chloroform-d) } \delta: 7.73 (d, \text{ } J = 8.4 \text{ Hz, } 2H), 7.57–7.30 (m, 5H), 7.18 (td, \text{ } J = 8.8, 2.4 \text{ Hz, } 1H), 5.90 (s, 1H); \]

\[\text{13C NMR (50 MHz, Chloroform-d) } \delta: 163.15 (CF, d, \text{ } J = 246 \text{ Hz}), 144.18 (d, \text{ } J = 9.0 \text{ Hz}), 143.19 (d, \text{ } J = 4.2 \text{ Hz}), 137.69 (d, \text{ } J = 2.6 \text{ Hz}), 132.68 , 128.87, 128.83 (2C), 128.66 (2C), 122.63 (d, \text{ } J = 8.7 \text{ Hz}), 119.32 (d, \text{ } J = 1.7 \text{ Hz}), 116.34 (d, \text{ } J = 23 \text{ Hz}) , 112.92 (d, \text{ } J = 24.5 \text{ Hz}), 47.35. \]

HRMS (ESI) for C_{15}H_{10}BrF: Calculated 366.9128 (M^+H); Found: 366.9131.

1,3-Dibromo-5-methyl-2-phenyl-1H-indene (2m):

According to the GP-2 the substrate 4-methyl-2-(2-phenylethynyl)benzaldehyde oxime afforded the product 1,3-dibromo-5-methyl-2-phenyl-1H-indene (2n) as a yellow solid; Yield = 35%;

\[R_f = 0.50 \text{ (hexane/EtOAc 50:1)} \]

\[\text{1H NMR (200 MHz, Chloroform-d) } \delta: 7.74–7.66 (m, 3H), 7.53–7.40 (m, 4H), 7.28 (d, \text{ } J = 7.8 \text{ Hz, } 1H), 5.85 (s, \text{ } 1H), 2.50 (s, \text{ } 3H); \]

\[\text{13C NMR (50 MHz, Chloroform-d) } \delta: 143.75, 141.12, 139.38, 132.63, 128.97, 128.90 (3C), 128.83, 128.66 (2C), 124.33, 123.50, 119.44, 47.27, 23.55. \]

HRMS (ESI) for C_{16}H_{13}Br_2: Calculated 362.9379 (M^+H); Found: 362.9383.

Reference

1H NMR of compound 2a

[Image of H NMR spectrum]

13C NMR of compound 2a

[Image of C NMR spectrum]
1H NMR of compound 2b

13C NMR of compound 2b
1H NMR of compound 2c

13C NMR of compound 2c
1H NMR of compound 2d

13C NMR of compound 2d
1H NMR of compound 2e

13C NMR of compound 2e
1H NMR of compound 2f

13C NMR of compound 2f
1H NMR of compound 2g

13C NMR of compound 2g
1H NMR of compound 2h

[Image of 1H NMR spectrum]

13C NMR of compound 2h

[Image of 13C NMR spectrum]
1H NMR of compound 2j

13C NMR of compound 2j
1H NMR of compound 2k

13C NMR of compound 2k
1H NMR of compound 2l

13C NMR of compound 2l
1H NMR of compound 2m

13C NMR of compound 2m