Electronic Supplementary Information

Design, synthesis and optical properties of small molecules based on dithieno[3,2-b:2',3'-d]stannole and stannafluorene

Chuantao Gu, Dangqiang Zhu, Meng Qiu, Liangliang Han, Shuguang Wen, Yonghai Li, Renqiang Yang

a CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China

Correspondence to: R. Yang (E-mail: yangrq@qibebt.ac.cn)
Scheme S1. The reaction of dialkylstannole derivatives with 1,2-dihaloarenes [1].

Figure S1. 1H NMR spectrum of DTSn-1 in CDCl$_3$.
Figure S2. 13C NMR spectrum of DTSn-1 in CDCl$_3$.

Figure S3. 119Sn NMR spectrum of DTSn-1 in CDCl$_3$.
Figure S4. 1H NMR spectrum of SnF-1 in CDCl$_3$.

Figure S5. 13C NMR spectrum of SnF-1 in CDCl$_3$.
Figure S6. 119Sn NMR spectrum of SnF-1 in CDCl$_3$.

Figure S7. 1H NMR spectrum of SnF-3 in CDCl$_3$.

55
Figure S8. 13C NMR spectrum of SnF-3 in CDCl$_3$.

Figure S9. 119Sn NMR spectrum of SnF-3 in CDCl$_3$.

Figure S10. The energies and distributions of the frontier molecular orbitals of the Sn-containing small molecules [2]. The optimized molecular geometries were confirmed to be minimum-energy conformations since there were no imaginary frequencies by vibrational frequencies calculation at the same level.

Figure S11. The fluorescence spectra of DTSn-1 with different concentrations of Al$^{3+}$ (excitation at 360 nm).
Figure S12. The fluorescence spectra of SnF-1 in absence and presence of 5×10^{-5} mol/L metal ions (excitation at 320 nm).

Figure S13. The fluorescence spectra of SnF-3 in absence and presence of 5×10^{-5} mol/L metal ions (excitation at 400 nm).

Figure S14. The structure of pre-DTSn-1 and the fluorescence spectra of pre-DTSn-1 with different concentrations of Al$^{3+}$ (excitation at 350 nm).
Figure S15. (a) The fluorescence spectra of DTSn-1 with different concentrations of Ru$^{3+}$ (excitation at 360 nm) and (b) Stern-Volmer plot of the quenching efficiency.

Figure S16. (a) The fluorescence spectra of SnF-1 with different concentrations of Ru$^{3+}$ (excitation at 320 nm) and (b) Stern-Volmer plot of the quenching efficiency.

Figure S17. (a) The fluorescence spectra of SnF-3 with different concentrations of Ru$^{3+}$ (excitation at 400 nm) and (b) Stern-Volmer plot of the quenching efficiency.

The quenching process can be quantitatively described by the Stern-Volmer equation3:

$$\frac{PL_0}{PL} = 1 + K_{SV}[Q] \quad (1)$$

where the PL$_0$ refers to the overall integrated emission intensity of fluorescence in the
absence of the quencher, PL corresponds to the integrated emission intensity of fluorescence in the presence of the quencher, K_{SV} is the Stern-Volmer constant. Here, the quencher was Ru$^{3+}$.

References: