Microwave-Assisted Synthesis and Photophysical Studies of Novel Fluorescent N-acylhydrazone- and Semicarbazone-7-OH-Coumarin Dyes

Thiago Moreira Pereira¹, Felipe Vitório¹, Ronaldo Costa Amaral², Kassio P. S. Zanoni², Neyde Y. Murakami Iha², Arthur Eugen Kümmerle¹.

1. Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Departament of Chemistry, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil.

2. Laboratory of Photochemistry and Energy Conversion, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo - SP 05508-000, Brazil;

Supporting Information

Contents
Copies of 1H NMR, 13C NMR, IV and Mass Spectra for all products
------------------------2-21
HPLC analysis of 3h
--21
pKa determination of 3a
--22
Photophysical parameters in water (pH = 3.0) at 298 K.
--23
Fig. S1. 1H NMR (500 MHz), 13C NMR (125 MHz) spectra of 1 in DMSO-$_d_6$.
Fig. S2. IR spectra of 1 in KBr.
Fig. S3. 1H NMR (500 MHz), 13C NMR (125 MHz) spectra of 3a in DMSO-d_6.
Fig. S4. IR spectra of 1 in KBr.

Fig. S5. EM spectra of 3a.
Fig. S6. 1H NMR (500 MHz), 13C NMR (125 MHz) spectra of 3b in DMSO-d_6.
Fig. S7. IR spectra of 3b in KBr.

Fig. S8. EM spectra of 3b.
Fig. S9. 1H NMR (500 MHz), 13C NMR (125 MHz) spectra of 3c in DMSO-d_6.
Fig. S10. NOESY spectrum of 3c in DMSO-d_6 and correlations indicating the (E)-isomer.
Fig. S11. IR spectra of 3c in KBr.

Fig. S12. EM spectra of 3c.
Fig. S13. 1H NMR (500 MHz), 13C NMR (125 MHz) spectra of 3d in DMSO-d_6.
Fig. S14. IR spectra of 3d in KBr.

Fig. S15. EM spectra of 3d.
Fig. S16. 1H NMR (500 MHz), 13C NMR (125 MHz) spectra of 3e in DMSO-d_6.
Fig. S17. IR spectra of 3e in KBr.

Fig. S18. EM spectra of 3e.
Fig. S19. 1H NMR (500 MHz), 13C NMR (125 MHz) spectra of 3f in DMSO-d_6.
Fig. S20. IR spectra of 3f in KBr.

Fig. S21. EM spectra of 3f.
Fig. S22. 1H NMR (500 MHz), 13C NMR (125 MHz) spectra of 3g in DMSO-d_6.
Fig. S23. IR spectra of 3g in KBr.

Fig. S24. EM spectra of 3g.
Fig. S25. 1H NMR (500 MHz), spectra of 3h in DMSO-d_6.

Fig. S26. 1H NMR, expanded aromatic region of 3h in DMSO-d_6 at 25 and 60°C.
Fig. S27. 13C NMR (125 MHz) spectrum of 3h in DMSO-d_6 (poor quality due to low solubility).

Fig. S28. IR spectra of 3h in KBr.
Fig. S29. EM spectra of 3h.

---- Shimadzu LCsolution Analysis Report ----

Acquired by : Admin
Sample Name : AK-5
Sample ID :
Tray# : 1
Vial # : 64
Injection Volume : 40 µL
Data File Name : AK-5.lcd
Method File Name : MET_60AGN_40AGUA_T10.lcm
Batch File Name : tabla.lcb
Report File Name : Default.lcr
Data Processed : 4/26/2016 4:56:10 PM

<Chromatogram>
pKa determination:

The spectral change from pH 5 to pH 8 is ascribed to the deprotonation of the hydroxyl group in the coumarin nucleus, as typical for other hidroxycoumarins, and lead to a well-defined isosbestic point around 375 nm. By the relationship between the pH and \(\log[(A - A_f)/(A_0 - A)]\), the pKa constant for the deprotonation of the \(3b\) hydroxycoumarin was calculated to be 6.7.

Fig. S31. pH titrations of \(3b\). Absorption and emission spectrum.

Fig. S32. pKa determination of \(3b\) considering 412nm and 351nm wavelengths.

\[\text{pKa} \approx 6.7.\]
Table S1. Photophysical parameters in water (pH = 3.0) at 298 K.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Φ^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>0.048</td>
</tr>
<tr>
<td>3b</td>
<td>0.068</td>
</tr>
<tr>
<td>3c</td>
<td>0.068</td>
</tr>
<tr>
<td>3d</td>
<td>0.066</td>
</tr>
<tr>
<td>3h</td>
<td>0.065</td>
</tr>
</tbody>
</table>

*Quantum yields were measured by the relative method against the standard compound ethyl-7-OH-coumarin-3-carboxylate ($\Phi = 0.83$ in water) [32].

Fig. S33. Proposition of protonated states of N-acylhydrazone- and Semicarbazone-7-OH-Coumarins