Chemical Transformation of Ginsenoside Re by a Heteropoly Acid Investigated Using HPLC-MSn/HRMS

Yang Xiu,a Huan-Xi Zhao,a Yue Gao,a Wen-Long Liua and Shu-Ying Liua,b

\textit{Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, P. R. China, and Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.}

* Corresponding author. E-mail: syliu@ciac.ac.cn.

\textbf{Fig. S1} TIC of the products of ginsenoside Re chemical transformation by H\textsubscript{3}PW\textsubscript{12}O\textsubscript{40} for (a) 1h, (b) 2h with extraction of catalyst at 1h and (c) 2h.
Fig. S2 High-resolution MS² spectrum from the [M+Na]⁺ ion at m/z 969 of ginsenoside Re.
Fig. S3 MS³ spectra on the ions at m/z (a) 799, (b) 783, (c) 765, (d) 637, (e) 619 and (f) 475 from the [M+HCOO]⁻ ion of ginsenoside Re.
Fig. S4 MS^3 spectra on the ions at m/z 783 from the [M+HCOO]^− ion of (a) ginsenoside 20(R)-Rg2 and (c) 25-OH-F4. Fragmentation pathways and MS^4 spectra on the ions at m/z 475 from the [M+HCOO]^− ion of (b) ginsenoside 20(R)-Rg2 and (d) 25-OH-F4.
Fig. S5 High-resolution MS² spectra from the [M-H]- ion of ginsenoside (a) 25-OH-F4, (b) 25-OH-Rg6, (c) 20(S)-Rg2 and (d) 20(R)-Rg2.
Fig. S6 High-resolution MS spectra of ginsenoside (a) 20(S)-Rf₂ and (b) 20(R)-Rf₂.
Fig. S7 High-resolution MS spectra of ginsenoside (a) Rg6 and (b) F4.