Electronic Supplementary Information

Ambipolar Azomethines As Potential Cathodic Color Switching Materials

Marie-Hélène Tremblay, Alexandra Gellé and W.G. Skene*

Laboratoire de caractérisation photophysique des matériaux conjugués Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
Tables of Contents

Fig. S1 Cyclic voltammograms of 1 measured with ferrocene at 25 (▬), 50 (▬), 75 (▬), 100 (▬), 200 (▬), 400 (▬), 600 (▬) and 800 (▬) mV/s in anhydrous and deaerated dichloromethane with 0.1 M TBAPF$_6$ electrolyte. Inset: current peak of ferrocene (▬) and 1 (▬) as a function of (scan rate)$^{1/2}$. ... 3

Fig. S2 Cyclic voltammograms of 2 measured with ferrocene at 25 (▬), 50 (▬), 75 (▬), 100 (▬), 200 (▬), 400 (▬), 600 (▬) and 800 (▬) mV/s in anhydrous and deaerated dichloromethane with 0.1 M TBAPF$_6$ electrolyte. Inset: current peak of ferrocene (▬) and 2 (▬) as a function of (scan rate)$^{1/2}$. ... 3

Fig. S3 Cyclic voltammograms of 3 measured with ferrocene as a function of scan rate in anhydrous and deaerated dichloromethane with 0.1 M TBAPF$_6$ electrolyte 25 (▬), 50 (▬), 75 (▬), 100 (▬), 200 (▬), 400 (▬), 600 (▬) and 800 (▬) mV/s. Inset: current peak of ferrocene (▬) and 3 (▬) as a function of (scan rate)$^{1/2}$. .. 3

Fig. S4 Cyclic voltammograms of 4 measured with ferrocene at 25 (▬), 50 (▬), 75 (▬), 100 (▬), 200 (▬), 400 (▬), 600 (▬) and 800 (▬) mV/s in anhydrous and deaerated dichloromethane with 0.1 M TBAPF$_6$ electrolyte. Inset: current peak of ferrocene (▬) and 4 (▬) as a function of (scan rate)$^{1/2}$. .. 4

Fig. S5 A) Spectroelectrochemistry of 2 (A) measured in dichloromethane (▬) when applying a potential greater than the corresponding E_{ox} (▬) followed by 0 V (▬). Inset: pictures of the honeycomb electrode in the neutral (left) and oxidized (right) states. B) Spectroelectrochemistry of 3 measured in dichloromethane (▬) when applying a potential more negative than the corresponding E_{red} (▬) followed by 0 V (▬). Inset: pictures of the honeycomb electrode in the neutral (left) and reduced (right) states. .. 4

Fig. S6. Variation of transmission % of 1 monitored at 590 nm with applied potential switched between 0 and -1.5 V and held at each potential for 30 sec... 5

Fig. S7. Variation of transmission % of 2 monitored at 635 nm with applied potential switched between 0 and +1.2 V and held at each potential for 30 sec... 5

Fig. S8. Variation of transmission % of 3 monitored at 735 nm with applied potential switched between 0 and -1.1 V and held at each potential for 30 sec... 5

Fig. S9. Variation of transmission % of 3 monitored at 735 nm with applied potential switched between 0 and -1.1 V, held at each potential for 30 sec, and switched for 20 min. Afterwards, a potential of 0 V was applied for 10 min and the cycle repeated... 5

Fig. S10. Variation of transmission % of 4 monitored at 720 nm with applied potential switched between 0 and -1.1 V and held at each potential for 30 sec... 6

Fig. S11. Variation of transmission % of 4 monitored at 590 nm with applied potential switched between 0 and -1.3 V and held at each potential for 30 sec... 6
Fig. S1 Cyclic voltammograms of 1 measured with ferrocene at 25 (■), 50 (■), 75 (■), 100 (■), 200 (■), 400 (■), 600 (■) and 800 (■) mV/s in anhydrous and deaerated dichloromethane with 0.1 M TBAPF₆ electrolyte. Inset: current peak of ferrocene (■) and 1 (■) as a function of (scan rate)½.

Fig. S2 Cyclic voltammograms of 2 measured with ferrocene at 25 (■), 50 (■), 75 (■), 100 (■), 200 (■), 400 (■), 600 (■) and 800 (■) mV/s in anhydrous and deaerated dichloromethane with 0.1 M TBAPF₆ electrolyte. Inset: current peak of ferrocene (■) and 2 (■) as a function of (scan rate)½.

Fig. S3 Cyclic voltammograms of 3 measured with ferrocene as a function of scan rate in anhydrous and deaerated dichloromethane with 0.1 M TBAPF₆ electrolyte 25 (■), 50 (■), 75 (■), 100 (■), 200 (■), 400 (■), 600 (■) and 800 (■) mV/s. Inset: current peak of ferrocene (■) and 3 (■) as a function of (scan rate)½.
Fig. S4 Cyclic voltammograms of 4 measured with ferrocene at 25 (▬), 50 (▬), 75 (▬), 100 (▬), 200 (▬), 400 (▬), 600 (▬) and 800 (▬) mV/s in anhydrous and deaerated dichloromethane with 0.1 M TBAPF$_6$ electrolyte. Inset: current peak of ferrocene (▬) and 4 (▬) as a function of (scan rate)$^{1/2}$.

Fig. S5 A) Spectroelectrochemistry of 2 (A) measured in dichloromethane (▬) when applying a potential greater than the corresponding E_{ox} (▬) followed by 0 V (▬). Inset: pictures of the honeycomb electrode in the neutral (left) and oxidized (right) states. B) Spectroelectrochemistry of 3 measured in dichloromethane (▬) when applying a potential more negative than the corresponding E_{red} (▬) followed by 0 V (▬). Inset: pictures of the honeycomb electrode in the neutral (left) and reduced (right) states.
Fig. S6. Variation of transmission % of 1 monitored at 590 nm with applied potential switched between 0 and -1.5 V and held at each potential for 30 sec.

Fig. S7. Variation of transmission % of 2 monitored at 635 nm with applied potential switched between 0 and +1.2 V and held at each potential for 30 sec.

Fig. S8. Variation of transmission % of 3 monitored at 735 nm with applied potential switched between 0 and -1.1 V and held at each potential for 30 sec.

Fig. S9. Variation of transmission % of 3 monitored at 735 nm with applied potential switched between 0 and -1.1 V, held at each potential for 30 sec, and switched for 20 min. Afterwards, a potential of 0 V was applied for 10 min and the cycle repeated.
Fig. S10. Variation of transmission % of 4 monitored at 720 nm with applied potential switched between 0 and -1.1 V and held at each potential for 30 sec.

Fig. S11. Variation of transmission % of 4 monitored at 590 nm with applied potential switched between 0 and -1.3 V and held at each potential for 30 sec.