Contents

Supplementary material 1: 1H NMR & 13C NMR spectra
Supplementary material 2: ESI-MS
Supplementary material 3: Molecular docking
Supplementary material 4: % cleavage data
Supplementary material 5: Antiproliferative study (IC$_{50}$)
Supplementary material 6: MIC values data
Supplementary material 7: Brine shrimp data

Supplementary material 1: 1H NMR & 13C NMR spectra
Figure S1: NMR
5'-(IH-Imidazol-1-yl)-3'-methyl-1',2-diphenyl-5-(pyridin-2-yl)-3,4-dihydro-J'H,2H-3,4'-bipyrazole (bpy-N) [4a]
3'-Methyl-5'-phenoxy-1',2-diphenyl-5-(pyridin-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole (bpy-O) [4b]

Figure S3: 1H NMR
Figure S4: APT

4-(5-(1H-Imidazol-1-yl)-3-methyl-1-phenyl-1H-pyrazol-4-yl)-6-(pyridin-2-yl)pyrimidin-2-amine (pma-N) [5a]

Figure S5: 1H NMR
Figure S6: APT

4-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-6-(pyridin-2-yl)pyrimidin-2-amine (pma-O) [5b]

Figure S7: 1H NMR
7-(5-(1H-Imidazol-1-yl)-3-methyl-1-phenyl-1H-pyrazol-4-yl)-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine (tpm-N) [6a]

Figure S9: 1H NMR
7-(3-Methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl)-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine (tpm-O) [6b]

Figure S11: 1H NMR
Figure S12: APT

$[(\eta^5-\text{C}_5\text{Me}_5)\text{Ir(bpy-N)}\text{Cl}]\text{Cl} \ [7a]$

Figure S13: ^1H NMR
Figure S14: APT

\[(q^5\text{-C}_5\text{Me}_5)\text{Ir(bpy-O)}\text{Cl}]\text{Cl} [7b]

Figure S15: 1H NMR
Figure S16: APT

\[\text{APT}[\eta^5-C_5\text{Me}_5]\text{Ir}(\text{pma-N})\text{Cl}\text{Cl} \] [8a]

Figure S17: 1H NMR
Figure S18: APT

\[\text{APT}[(\eta^5-\text{C}_5\text{Me}_5)\text{Ir(pma-O)}\text{Cl}]\text{Cl} [8b] \]

Figure S19: 1H NMR
Figure S20: APT

\[
[(\eta^5-C_5Me_5)Ir(tpm-N)Cl]Cl \quad [9a]
\]

Figure S21: \(^1\)H NMR
Figure S22: APT

\[(\eta^5{-}\text{CsMe}_5)\text{Ir}(\text{tpm-O})\text{Cl}]\text{Cl} \ [9b]\]

Figure S23: 'H NMR
Supplementary material 2: ESI-MS
Figure S25: Complex 7a
Supplementary material 3: Molecular docking

Figure S26: 4a

Figure S27: 4b

Figure S28: 5a
Supplementary material 4: DNA cleavage activity data presented with standard deviation for three independent experiments.

Table S34:

<table>
<thead>
<tr>
<th>Compounds</th>
<th>SC (µM)</th>
<th>L (µM)</th>
<th>NC (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA control</td>
<td>81 ± 1.5</td>
<td>19 ± 1.7</td>
<td>-</td>
</tr>
<tr>
<td>Salt</td>
<td>66 ± 1.7</td>
<td>14 ± 1.5</td>
<td>20 ± 1.1</td>
</tr>
<tr>
<td>4a</td>
<td>14 ± 2.0</td>
<td>47 ± 1.0</td>
<td>39 ± 1.0</td>
</tr>
<tr>
<td>4b</td>
<td>21 ± 1.5</td>
<td>49 ± 2.0</td>
<td>30 ± 1.5</td>
</tr>
<tr>
<td>5a</td>
<td>23 ± 1.1</td>
<td>43 ± 1.1</td>
<td>34 ± 1.1</td>
</tr>
<tr>
<td>5b</td>
<td>25 ± 2.0</td>
<td>40 ± 1.2</td>
<td>35 ± 2.0</td>
</tr>
<tr>
<td>6a</td>
<td>30 ± 1.0</td>
<td>35 ± 1.7</td>
<td>35 ± 2.0</td>
</tr>
<tr>
<td>6b</td>
<td>23 ± 1.5</td>
<td>41 ± 1.5</td>
<td>36 ± 1.5</td>
</tr>
<tr>
<td>7a</td>
<td>10 ± 1.5</td>
<td>32 ± 2.2</td>
<td>58 ± 1.5</td>
</tr>
<tr>
<td>7b</td>
<td>19 ± 2.0</td>
<td>29 ± 1.2</td>
<td>52 ± 1.0</td>
</tr>
<tr>
<td>8a</td>
<td>20 ± 2.0</td>
<td>39 ± 0.9</td>
<td>41 ± 2.0</td>
</tr>
<tr>
<td>8b</td>
<td>20 ± 1.1</td>
<td>25 ± 1.1</td>
<td>55 ± 1.1</td>
</tr>
<tr>
<td>9a</td>
<td>21 ± 1.5</td>
<td>28 ± 1.6</td>
<td>51 ± 1.5</td>
</tr>
<tr>
<td>9b</td>
<td>30 ± 1.0</td>
<td>31 ± 2.1</td>
<td>38 ± 1.7</td>
</tr>
</tbody>
</table>

Supplementary material 5: Anticancer activity on A549 (lung) cancer cell line, IC$_{50}$ data presented with standard deviation for three independent experiments.

Table S35:

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC$_{50}$ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>387 ± 1.20</td>
</tr>
<tr>
<td>4b</td>
<td>220 ± 0.82</td>
</tr>
<tr>
<td>5a</td>
<td>197 ± 2.12</td>
</tr>
<tr>
<td>5b</td>
<td>88 ± 0.98</td>
</tr>
<tr>
<td>6a</td>
<td>290 ± 3.20</td>
</tr>
<tr>
<td>6b</td>
<td>170 ± 1.65</td>
</tr>
<tr>
<td>7a</td>
<td>245 ± 4.23</td>
</tr>
<tr>
<td>7b</td>
<td>89 ± 0.79</td>
</tr>
<tr>
<td>8a</td>
<td>96 ± 1.72</td>
</tr>
<tr>
<td>8b</td>
<td>74 ± 2.78</td>
</tr>
<tr>
<td>9a</td>
<td>163 ± 0.43</td>
</tr>
<tr>
<td>9b</td>
<td>116 ± 3.49</td>
</tr>
</tbody>
</table>
Supplementary material 6: MIC values of ligands and complexes in µM presented with standard deviation for three independent experiments.

Table S36:

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Gram positive (in µM)</th>
<th>Gram negative (in µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.aureus</td>
<td>B.subtilis</td>
</tr>
<tr>
<td>Salt</td>
<td>566 ± 12</td>
<td>572 ± 6</td>
</tr>
<tr>
<td>4a</td>
<td>303 ± 5</td>
<td>301 ± 5</td>
</tr>
<tr>
<td>4b</td>
<td>316 ± 6</td>
<td>317 ± 6</td>
</tr>
<tr>
<td>5a</td>
<td>341 ± 12</td>
<td>337 ± 12</td>
</tr>
<tr>
<td>5b</td>
<td>353 ± 4</td>
<td>353 ± 4</td>
</tr>
<tr>
<td>6a</td>
<td>283 ± 5</td>
<td>280 ± 8</td>
</tr>
<tr>
<td>6b</td>
<td>297 ± 8</td>
<td>292 ± 11</td>
</tr>
<tr>
<td>7a</td>
<td>103 ± 4</td>
<td>105 ± 6</td>
</tr>
<tr>
<td>7b</td>
<td>114 ± 5</td>
<td>117 ± 8</td>
</tr>
<tr>
<td>8a</td>
<td>109 ± 9</td>
<td>111 ± 9</td>
</tr>
<tr>
<td>8b</td>
<td>117 ± 4</td>
<td>120 ± 6</td>
</tr>
<tr>
<td>9a</td>
<td>93 ± 5</td>
<td>95 ± 5</td>
</tr>
<tr>
<td>9b</td>
<td>97 ± 2</td>
<td>99 ± 4</td>
</tr>
</tbody>
</table>

Supplementary material 7: Brine shrimp lethality bioassay data presented with standard deviation for three independent experiments.

Table S37:

<table>
<thead>
<tr>
<th>Compounds</th>
<th>LC50 (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>7.05 ± 0.074</td>
</tr>
<tr>
<td>4b</td>
<td>7.53 ± 0.071</td>
</tr>
<tr>
<td>5a</td>
<td>7.80 ± 0.067</td>
</tr>
<tr>
<td>5b</td>
<td>8.49 ± 0.065</td>
</tr>
<tr>
<td>6a</td>
<td>5.00 ± 0.032</td>
</tr>
<tr>
<td>6b</td>
<td>5.34 ± 0.059</td>
</tr>
<tr>
<td>7a</td>
<td>6.33 ± 0.099</td>
</tr>
<tr>
<td>7b</td>
<td>6.63 ± 0.066</td>
</tr>
<tr>
<td>8a</td>
<td>6.12 ± 0.096</td>
</tr>
<tr>
<td>8b</td>
<td>7.77 ± 0.101</td>
</tr>
<tr>
<td>9a</td>
<td>2.91 ± 0.044</td>
</tr>
<tr>
<td>9b</td>
<td>4.83 ± 0.053</td>
</tr>
</tbody>
</table>