Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Information (ESI) for

Stereoselective photoreaction in P-stereogenic dithiazolylbenzo[b]phosphole chalcogenides

Shunsuke Iijima,^a Takuya Nakashima^a and Tsuyoshi Kawai^{a,b*}

^a Graduate School of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan. *E* mail: tkawai@ms.naist.jp
^b NAIST-CEMES International Collaborative Laboratory for Supraphotoactive System, Centre d'Élaboration de Matériaux et d'Etudes Structurales, CEMES,
29, rue Jeanne Marvig, BP 94347, Toulouse 31055, France.

1. NMR characterizations

Fig. S1 ¹H NMR spectrum of *rac*-1a in CDCl₃.

Fig. S2 ¹³C NMR spectrum of *rac*-1a in CDCl₃.

Fig. S4 ¹H NMR spectrum of *rac*-2a in CDCl₃.

Fig. S5 ¹³C NMR spectrum of *rac-2a* in CDCl₃.

Fig. S6 ³¹P NMR spectrum of *rac*-1a in CDCl₃.

- 2. Photoreaction monitored with UV-vis spectra and ¹H NMR
- 2.1. UV-Vis absorption spectral change

Fig. S7 Changes in the UV-vis absorption spectra of open form (*rac*-1a, blue solid line) to PSS (red dashed line), and closed form (1b, red solid line) in toluene $(1.9 \times 10^{-5} \text{ M})$.

Fig. S8 Changes in the UV-Vis absorption spectra of open form (*rac*-1a, blue solid line) to PSS (red dashed line), and closed form (1b, red solid line) in methanol (2.3×10^{-5} M).

Fig. S9 Changes in the UV-Vis absorption spectra of open form (*rac-2a*, blue solid line) to PSS (red dashed line), and closed form (**2b**, red solid line) in toluene $(2.9 \times 10^{-5} \text{ M})$.

Fig. S10 Changes in the UV-Vis absorption spectra of open form (*rac-2a*, blue solid line) to PSS (red dashed line), and closed form (**2b**, red solid line) in methanol (2.8×10^{-5} M).

2.2. ¹H NMR spectral change

Fig. S11 ¹H NMR spectrum of photoproducts **1b** prepared by UV irradiation to the toluene solution followed by the separated with RP-HPLC (measured in CDCl₃).

Fig. S12 ¹H NMR spectrum of photoproducts **1b** prepared by UV irradiation to the methanol solution followed by the separated with RP-HPLC (measured in CDCl₃).

Fig. S13 ¹H NMR spectrum of photoproducts **2b** prepared by UV irradiation to the toluene solution followed by the separated with RP-HPLC (measured in CDCl₃).

Fig. S14 ¹H NMR spectrum of photoproducts **2b** prepared by UV irradiation to the methanol solution followed by the separated with RP-HPLC (measured in CDCl₃).

3. Chiral separation

Fig. S15 Chiral HPLC chromatogram of *rac*-1a in ethanol. (Flow rate: 6 mL / min., Detection wavelength: 254 nm)

Fig. S16 Chiral HPLC chromatogram of a) primary fraction and b) second fraction separated of *rac*-**1a** in ethanol, after optical resolution. (Flow rate: 6 mL/min., Detection wavelength: 254 nm)

Fig. S17 Chiral HPLC chromatogram of *rac-2a* in ethanol. (Flow rate: 6 mL / min., Detection wavelength: 254 nm)

Fig. S18 Chiral HPLC chromatogram of a) primary fraction and b) second fraction separated of *rac*-2a in ethanol, after optical resolution. (Flow rate: 6 mL/min., Detection wavelength: 254 nm)

Fig. S19 CD spectra for *rac-*1a of open form in toluene (blue: first fraction, red: second fraction).

Fig. S20 CD spectra at PSS states achieved by UV irradiation to the solution in Fig. S15 in toluene.

Fig. S21 CD spectra for *rac-*2a of open form in toluene (blue: first fraction, red: second fraction).

Fig. S22 CD spectra at PSS states achieved by UV irradiation to the solution in Fig. S17 in toluene.

Fig. S23 CD spectra for rac-2a of open form in methanol (blue: first fraction, red: second fraction).

Fig. S24 CD spectra at PSS states achieved by UV irradiation to the solution in Fig. S19 in methanol.

- 4. Study in crystalline state
- 4.1 Photochromism in crystal

Fig. S25 Photochromism of *rac*-1a in crystal; (a) before and after (b,c) UV irradiation.

Fig. S26 Photochromism of *rac*-2a in crystal; (a) before and after (b,c) UV irradiation.

Fig. S27 ¹H NMR spectrum of photoproducts prepared by UV irradiation to single crystals **1a** and dissolved in CDCl₃.

Fig. S28 ¹H NMR spectrum of photoproducts prepared by UV irradiation to single crystals **1b** and dissolved in CDCl₃.

4.2 X-ray crystallographic data

Molecule	<i>rac</i> -1a	rac-2a
Formula	$C_{34}H_{25}N_2OPS_2$	$C_{36}H_{28}N_3PS_3$
Mol weight (g mol ⁻¹)	572.68	629.79
Crystal dimension (mm)	$0.100\times0.070\times0.020$	$0.140 \times 0.100 \times 0.050$
Crystal system	Monoclinic	Triclinic
Space group	P2 _{1/c} (#14)	P1 (#2)
<i>a</i> (Å)	11.4597(2)	10.0101(2)
<i>b</i> (Å)	29.0720(5)	11.0471(2)
<i>c</i> (Å)	16.6209(3)	14.5019(3)
α (°)		86.1262(7)
β(°)	93.7884(7)	83.4645(7)
γ(°)		81.5450(7)
$V(\text{\AA}^3)$	5525.24(17)	1573.81(5)
Z value	8	2
D_{calcd} (g mol ⁻¹)	1.377	1.329
<i>F</i> (0 0 0)	2384.00	656.00
μ (Mo K α) (cm ⁻¹)	2.825	3.171
Temperature (K)	123	123
No. of measured reflections	95332	27280
No. of unique reflections	12666	7207
Goodness of fit	1.05	1.09
Final <i>R</i> indices		
R_1	0.0395	0.0374
$wR_2[I > 2\sigma(I)]$	0.0997	0.1026
CCDC No.	CCDC-1445542	CCDC-1445543

Table S1. Crystallographic data for rac-1a and rac-2a

5. Computational data

Optimization of molecular conformations of **1a** and **2a** were carried out by DFT calculation with ω B97XD/6-31G(d,p) level.

5.1. Optimization of molecular conformation

Fig. S29 Optimized structure of *S*_P-*P*-1a.

Fig. S30 Optimized structure of *S*_P-*M*-1a.

Fig. S31 Optimized structure of *R*_P-*P*-1a.

Fig. S32 Result of optimization of *R*_P-*M*-1a.

Fig. S33 Optimized structure of *S*_P-*P*-2a.

Fig. S34 Optimized structure of *S*_P-*M*-2a.

Fig. S35 Optimized structure of *R*_P-*P*-2a.

Fig. S36 Optimized structure of *R*_P-*M*-2a.

5.2. Energy difference between *P*- and *M*-conformers estimated by DFT

Fig. S37 Diagram of energy difference between S_P -P-1a and S_P -M-1a optimized by ω B97XD/6-31G(d,p) level of DFT calculation.

Fig. S38 Diagram of energy difference between S_P -P-2a and S_P -M-2a optimized by ω B97XD/6-31G(d,p) level of DFT calculation.

(S,S)-Right-handed helical structure

Fig. S39 Diagram of energy difference between diastereomers of S_{P} -(R,R)-1b and S_{P} -(S,S)-1b calculated by CAM-B3LYP/6-31G(d,p) level of DFT calculation.

6. Other NMR data

Fig. S42 ³¹P NMR spectrum of *rac*-1a in toluene- d_8 .

Fig. S43 ³¹P NMR spectrum of rac-2a in toluene- d_8 .