Electronic Supplementary Information (ESI) for

Stereoselective photoreaction in P-stereogenic dithiazoylbenzo[b]phosphole chalcogenides

Shunsuke Iijima, a Takuya Nakashima a and Tsuyoshi Kawai a,b*

a Graduate School of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
E mail: tkawai@ms.naist.jp
b NAIST-CMES International Collaborative Laboratory for Supraphotoactive System, Centre d’Elaboration de Matériaux et d’Etudes Structurales, CEMES, 29, rue Jeanne Marvig, BP 94347, Toulouse 31055, France.
1. NMR characterizations

Fig. S1 1H NMR spectrum of rac-1a in CDCl$_3$.

Fig. S2 13C NMR spectrum of rac-1a in CDCl$_3$.

S2
Fig. S3 31P NMR spectrum of rac-1a in CDCl$_3$.

Fig. S4 1H NMR spectrum of rac-2a in CDCl$_3$.
Fig. S5 13C NMR spectrum of rac-2a in CDCl$_3$.

Fig. S6 31P NMR spectrum of rac-1a in CDCl$_3$.
2. Photoreaction monitored with UV-vis spectra and 1H NMR

2.1. UV-Vis absorption spectral change

![Graph](image1)

Fig. S7 Changes in the UV-vis absorption spectra of open form (*rac-1a*, blue solid line) to PSS (red dashed line), and closed form (*1b*, red solid line) in toluene (1.9×10^{-5} M).

![Graph](image2)

Fig. S8 Changes in the UV-Vis absorption spectra of open form (*rac-1a*, blue solid line) to PSS (red dashed line), and closed form (*1b*, red solid line) in methanol (2.3×10^{-5} M).
Fig. S9 Changes in the UV-Vis absorption spectra of open form (rac-2a, blue solid line) to PSS (red dashed line), and closed form (2b, red solid line) in toluene (2.9 × 10⁻⁵ M).

Fig. S10 Changes in the UV-Vis absorption spectra of open form (rac-2a, blue solid line) to PSS (red dashed line), and closed form (2b, red solid line) in methanol (2.8 × 10⁻⁵ M).
2.2. \(^1\text{H} \) NMR spectral change

Fig. S11 \(^1\text{H} \) NMR spectrum of photoproducts 1b prepared by UV irradiation to the toluene solution followed by the separated with RP-HPLC (measured in CDCl\(_3\)).

Fig. S12 \(^1\text{H} \) NMR spectrum of photoproducts 1b prepared by UV irradiation to the methanol solution followed by the separated with RP-HPLC (measured in CDCl\(_3\)).
Fig. S13 1H NMR spectrum of photoproducts 2b prepared by UV irradiation to the toluene solution followed by the separated with RP-HPLC (measured in CDCl$_3$).

Fig. S14 1H NMR spectrum of photoproducts 2b prepared by UV irradiation to the methanol solution followed by the separated with RP-HPLC (measured in CDCl$_3$).
3. Chiral separation

Fig. S15 Chiral HPLC chromatogram of rac-1a in ethanol. (Flow rate: 6 mL / min., Detection wavelength: 254 nm)

Fig. S16 Chiral HPLC chromatogram of a) primary fraction and b) second fraction separated of rac-1a in ethanol, after optical resolution. (Flow rate: 6 mL / min., Detection wavelength: 254 nm)

Fig. S17 Chiral HPLC chromatogram of rac-2a in ethanol. (Flow rate: 6 mL / min., Detection wavelength: 254 nm)
Fig. S18 Chiral HPLC chromatogram of a) primary fraction and b) second fraction separated of rac-2a in ethanol, after optical resolution. (Flow rate: 6 mL / min., Detection wavelength: 254 nm)

Fig. S19 CD spectra for rac-1a of open form in toluene (blue: first fraction, red: second fraction).

Fig. S20 CD spectra at PSS states achieved by UV irradiation to the solution in Fig. S15 in toluene.
Fig. S21 CD spectra for rac-2a of open form in toluene (blue: first fraction, red: second fraction).

Fig. S22 CD spectra at PSS states achieved by UV irradiation to the solution in Fig. S17 in toluene.

Fig. S23 CD spectra for rac-2a of open form in methanol (blue: first fraction, red: second fraction).
Fig. S24 CD spectra at PSS states achieved by UV irradiation to the solution in **Fig. S19** in methanol.
4. Study in crystalline state

4.1 Photochromism in crystal

Fig. S25 Photochromism of *rac-1a* in crystal; (a) before and after (b,c) UV irradiation.

Fig. S26 Photochromism of *rac-2a* in crystal; (a) before and after (b,c) UV irradiation.
Fig. S27 1H NMR spectrum of photoproducts prepared by UV irradiation to single crystals 1a and dissolved in CDCl$_3$.

Fig. S28 1H NMR spectrum of photoproducts prepared by UV irradiation to single crystals 1b and dissolved in CDCl$_3$.
4.2 X-ray crystallographic data

Table S1. Crystallographic data for rac-1a and rac-2a

<table>
<thead>
<tr>
<th>Molecule</th>
<th>rac-1a</th>
<th>rac-2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${34}$H${25}$N$_2$OPS$_2$</td>
<td>C${36}$H${26}$N$_3$PS$_3$</td>
</tr>
<tr>
<td>Mol weight (g mol$^{-1}$)</td>
<td>572.68</td>
<td>629.79</td>
</tr>
<tr>
<td>Crystal dimension (mm)</td>
<td>0.100 × 0.070 × 0.020</td>
<td>0.140 × 0.100 × 0.050</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2$_1$/c (#14)</td>
<td>P$ar{1}$ (#2)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>11.4597(2)</td>
<td>10.0101(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>29.0720(5)</td>
<td>11.0471(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>16.6209(3)</td>
<td>14.5019(3)</td>
</tr>
<tr>
<td>α (°)</td>
<td>86.1262(7)</td>
<td>86.1262(7)</td>
</tr>
<tr>
<td>β (°)</td>
<td>93.7884(7)</td>
<td>83.4645(7)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>81.5450(7)</td>
<td>81.5450(7)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>5525.24(17)</td>
<td>1573.81(5)</td>
</tr>
<tr>
<td>Z value</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>D_{calc} (g mol$^{-1}$)</td>
<td>1.377</td>
<td>1.329</td>
</tr>
<tr>
<td>$F(0 0 0)$</td>
<td>2384.00</td>
<td>656.00</td>
</tr>
<tr>
<td>μ (Mo Kα) (cm$^{-1}$)</td>
<td>2.825</td>
<td>3.171</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>No. of measured reflections</td>
<td>95332</td>
<td>27280</td>
</tr>
<tr>
<td>No. of unique reflections</td>
<td>12666</td>
<td>7207</td>
</tr>
<tr>
<td>Goodness of fit</td>
<td>1.05</td>
<td>1.09</td>
</tr>
<tr>
<td>Final R indices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_1</td>
<td>0.0395</td>
<td>0.0374</td>
</tr>
<tr>
<td>wR_2 [$I > 2\sigma(I)$]</td>
<td>0.0997</td>
<td>0.1026</td>
</tr>
<tr>
<td>CCDC No.</td>
<td>CCDC-1445542</td>
<td>CCDC-1445543</td>
</tr>
</tbody>
</table>
5. Computational data

Optimization of molecular conformations of 1a and 2a were carried out by DFT calculation with ωB97XD/6-31G(d,p) level.

5.1. Optimization of molecular conformation

![Optimized structure](image1)

Fig. S29 Optimized structure of S_{P-P-1a}.

![Optimized structure](image2)

Fig. S30 Optimized structure of S_{P-M-1a}.
Fig. S31 Optimized structure of $R\text{P-}P\text{-}1\text{a}$.
N-P distance : 3.261 Å
N-O distance : 3.366 Å
CH/π : 2.500 Å
C-C distance : 3.564 Å
CH/π : 3.115 Å
CH/N : 2.500 Å

Fig. S32 Result of optimization of $R\text{P-M-}1\text{a}$.
N-P distance : 3.238 Å
N-O distance : 3.726 Å
CH/π : 3.036 Å
C-C distance : 3.563 Å
CH/N : 2.488 Å
CH/π : 3.093 Å
Fig. S33 Optimized structure of \(S_{P-P-2a} \).

Fig. S34 Optimized structure of \(S_{P-M-2a} \).
Fig. S35 Optimized structure of *R*-P-2a.

- **N-P distance**: 3.332 Å
- **CH/N**: 2.505 Å
- **N-S distance**: 3.657 Å
- **C-C distance**: 3.590 Å
- **CH/π**: 6.311 Å

Fig. S36 Optimized structure of *R*-M-2a.

- **N-P distance**: 3.112 Å
- **N-S distance**: 3.804 Å
- **CH/π**: 3.552 Å
- **CH/N**: 2.538 Å
- **C-C distance**: 3.548 Å
- **CH/π**: 3.193 Å
- **CH/π**: 3.465 Å
5.2. Energy difference between P- and M-conformers estimated by DFT

Fig. S37 Diagram of energy difference between S_P-P-$1a$ and S_P-M-$1a$ optimized by oB97XD/6-31G(d,p) level of DFT calculation.
Fig. S38 Diagram of energy difference between $S_{P}-P$-2a and $S_{P}-M$-2a optimized by oB97XD/6-31G(d,p) level of DFT calculation.

Fig. S39 Diagram of energy difference between diastereomers of $S_{P}-(R,R)$-1b and $S_{P}-(S,S)$-1b calculated by CAM-B3LYP/6-31G(d,p) level of DFT calculation.
6. Other NMR data

![Fig. S40 1H NMR spectrum of rac-1a in toluene-d8.](image)

![Fig. S41 1H NMR spectrum of rac-2a in toluene-d8.](image)
Fig. S42 31P NMR spectrum of rac-1a in toluene-d_8.
Fig. S43 31P NMR spectrum of rac-2a in toluene-d_8.