Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting Information

Design and Synthesis of New s-Triazine Polymers and its Application as Nanoparticulate Drug

Delivery Systems

Sherine N. Khattab,'* Samar E. Abdel Naim, Mousa El Sayed, Aly A. El Bardan, Ahmed O. Elzoghby, Adnan A. Bekhit, Ayman El-Faham*

Content

Supp 1: Structure of 4-(5-(p-tolyl)-3-(trifluoromethyl)-1*H*-pyrazol-1-yl)benzene sulfonamide; celecoxib (CXB).
Supp 2: Table S1: Thermal decomposition data of polymers 25-48 as recorded from their TG & DTG curves.
Supp 3: Table S2: Thermodynamic parameters of kinetic data obtained from the nonisothermal decomposition of the prepared

polymers 25-48

Supp 4: Table S3: Thermal transitions of polymers 25-48

Figure 1: IR (KBr) of 2,2'-(6-morpholino-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid 9. Figure 2: ¹H-NMR (DMSO-d₆) of 2,2'-(6-morpholino-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid 9. **Figure 3**: ¹H-NMR (DMSO, D₂O) of 2,2'-(6-morpholino-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid **9**. **Figure 4**: IR (KBr) of 2,2'-(6-morpholino-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid **10**. **Figure 5**: ¹H-NMR (DMSO-d₆) of 2,2'-(6-morpholino-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid **10**. **Figure 6**: IR (KBr) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid **11**. Figure 7: ¹H-NMR (DMSO-d₆) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid **11**. Figure 8: ¹H-NMR (DMSO, D₂O) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid **11. Figure 9**: ¹³C-NMR (DMSO-d₆) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid **11. Figure 10**: IR (KBr) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid **12**. Figure 11: ¹H-NMR (DMSO-d₆) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid 12. **Figure 12**: ¹³C-NMR (DMSO-d₆) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid **12**. **Figure 13**: IR (KBr) of 2,2'-(6-(phenylamino)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid **13**. Figure 14: ¹H-NMR (DMSO-d₆) of 2,2'-(6-(phenylamino)-1,3,5-triazine-2,4-divl)bis(azanedivl)diacetic acid 13. Figure 15: ¹H-NMR (DMSO, D₂O) of 2,2'-(6-(phenylamino)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid 13. Figure 16: IR (KBr) of 2,2'-(6-(phenylamino)-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid 14. Figure 17: ¹H-NMR (DMSO, D₂O) of 2,2'-(6-(phenylamino)-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid 14. Figure 18: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 25. Figure 19: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 25. Figure 20: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 25. Figure 21: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 25. Figure 22: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 25. Figure 23: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 26. Figure 24: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 26. Figure 25: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 26. Figure 26: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 26. Figure 27: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 26. Figure 28: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 27. Figure 29: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 27. **Figure 30**: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **27.**

Figure 31: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 27.
Figure 32: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 27.
Figure 33: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 28.
Figure 34: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 28.
Figure 35: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 28.
Figure 36: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 28.
Figure 37: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 28.
Figure 38: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 28.
Figure 39: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 29.
Figure 39: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 29.
Figure 40: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 29.

Figure 49: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] **31**.

Figure 50: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] **31**.

Figure 51: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] **31**.

Figure 52: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] **31**.

Figure 53: IR (KBr) of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] **32**. **Figure 54**: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] **32**. **Figure 55**: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] **32**. **32**.

Figure 56: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] **32**. **Figure 57**: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] **32**. **Figure 58**: IR (KBr) of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **33**.

Figure 59: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **33**.

Figure 60: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **33**.

Figure 61: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **33**.

Figure 62: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **33**.

Figure 63: IR (KBr) of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] **34**.

Figure 64: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] **34**. **Figure 65**: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] **34**.

Figure 66: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] **34**. **Figure 67**: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] **34**. **Figure 68**: IR (KBr) of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] **35**.

Figure 69: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] **35**.

Figure 70: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] **35**.

Figure 71: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] **35**.

Figure 72: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] **35**.

Figure 73: IR (KBr) of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] **36**.

Figure 74: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] **36**. **Figure 75**: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] **36**.

Figure 76: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] **36.** Figure 77: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 36. Figure 78: IR (KBr) of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylamino)-1,3,5-triazin-2-ylamino)acetic acid] 37. Figure 79: TGA of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylamino)-1,3,5-triazin-2-ylamino)acetic acid] 37. Figure 80: TGA/DTG of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylamino)-1,3,5-triazin-2-ylamino)acetic acid] 37. Figure 81: DTA of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylamino)-1,3,5-triazin-2-ylamino)acetic acid] 37. Figure 82: DSC of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylamino)-1,3,5-triazin-2-ylamino)acetic acid] 37. Figure 83: IR (KBr) of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylthio)-1,3,5-triazin-2-ylthio)acetic acid] 38. Figure 84: TGA of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylthio)-1,3,5-triazin-2-ylthio)acetic acid] 38. Figure 85: TGA/DTG of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylthio)-1,3,5-triazin-2-ylthio)acetic acid] 38. Figure 86: DTA of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylthio)-1,3,5-triazin-2-ylthio)acetic acid] 38. Figure 87: DSC of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylthio)-1,3,5-triazin-2-ylthio)acetic acid] 38. Figure 88: IR (KBr) of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 39. Figure 89: TGA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 39. Figure 90: TGA/DTG of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 39. Figure 91: DTA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 39. Figure 92: DSC of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 39. Figure 93: IR (KBr) of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 40. Figure 94: TGA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 40. Figure 95: TGA/DTG of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 40. Figure 96: DTA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 40.

Figure 97: DSC of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 40.
Figure 98: IR (KBr) of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 41.
Figure 100: TGA/DTG of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 41.
Figure 101: DTA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 41.
Figure 102: DSC of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 41.
Figure 102: DSC of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 41.
Figure 103: IR (KBr) of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 42.
Figure 104: TGA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 42.
Figure 105: TGA/DTG of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 42.
Figure 106: DTA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 42.
Figure 106: DTA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 42.
Figure 107: DSC of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 42.
Figure 108: IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 43.
Figure 109: TGA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 43.
Figure 109: TGA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 43.
Figure 109: TGA of poly[2-(4-(2-(4-aminophen

Figure 111: DTA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 43.
Figure 112: DSC of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 43.
Figure 113: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.
Figure 114: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.
Figure 115: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.
Figure 116: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.
Figure 117: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.
Figure 117: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.
Figure 118: IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.
Figure 118: IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.
Figure 118: IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.
Figure 118: IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 45.

Figure 119: TGA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **45**. **Figure 120**: TGA/DTG of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **45**.

Figure 121: DTA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid]45.Figure 122: DSC of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid]45.Figure 123: IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid]46.

Figure 124: TGA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 46. Figure 125: TGA/DTG of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 46. Figure 126: DTA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 46. Figure 127: DSC of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 46. Figure 128: IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 47.

Figure 129: TGA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] **47**. **Figure 130**: TGA/DTG of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] **47**.

Figure 131: DTA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 47. Figure 132: DSC of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 47. Figure 133: IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 48. Figure 134: TGA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 48. Figure 135: TGA/DTG of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(phenylamino)-1.3,5-triazin-2-ylthio)acetic acid] 48. Figure 136: DTA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 48. Figure 137: DSC of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 48. Figure 138: IR (KBr) of Celecoxib (CXB)-loaded polymeric NPs CXB-26 Figure 139: IR (KBr) of Celecoxib (CXB)-loaded polymeric NPs CXB-43 Figure 140: IR (KBr) of Celecoxib (CXB)-loaded polymeric NPs CXB-44 Figure 141: IR (KBr) of Celecoxib (CXB)-loaded polymeric NPs CXB-45 Figure 142: IR (KBr) of Celecoxib (CXB)-loaded polymeric NPs CXB-46 Figure 143a, b: Size and Zeta of Celecoxib (CXB)-loaded polymeric NPs CXB-26 NPs Figure 144a, b: Size and Zeta of Celecoxib (CXB)-loaded polymeric NPs CXB-43 NPs Figure 145a, b: Size and Zeta of Celecoxib (CXB)-loaded polymeric NPs CXB-44 NPs Figure 146a, b: Size and Zeta of Celecoxib (CXB)-loaded polymeric NPs CXB-45 NPs:

Figure 147a, b: Size and Zeta of Celecoxib (CXB)-loaded polymeric NPs CXB-46 NPs

Structure of 4-(5-(p-tolyl)-3-(trifluoromethyl)-1*H*-pyrazol-1-yl)benzene sulfonamide; celecoxib (CXB).

Supp 2:

Table S1: Thermal decomposition data of polymers 25-48 a	as recorded from their TG & DTG curves.
--	---

Polymer	Stage	TGA	Wt loss	DTG	Residue
No	Suge	(°C)	(%)	210	(%)
25	Ι	54-197	9.8	79	
	II	197-368	28.4	305	
	III	368-516	14.0	420	
	IV	516-627	30.0	568	17.9
26	Ι	60-183	2.3	88	
	II	183-297	15.8	264	
	III	297-448	27.0	366	
	IV	488-625	39.3	546	15.6
27	Ι	47-188	8.2	95	
	II	188-376	35.9	270	
	III	376-500	12.6	430	
	IV	500-608	33.0	555	10.3
28	Ι	40-161	12.7	67	
	II	161-377	30.4	257	
	III	377-503	16.6	415	
	IV	503-629	34.8	560	5.5
29	Ι	41.8-179	10.4	74	
29	1	41.8-179	10.4	74	

	II	179-376	32.0	304	
	III	376-538	22.3	416	
	IV	538-634	22.7	557	12.7
30	Ι	34-125	16.5	72	
	II	125-240	5.9	156	
	III	240-375	23.8	330	
	IV	375-476	10.3	410	
	V	476-657	17.9	544	25.6
31	Ι	38-185	18.2	80	
	II	185-327	20.2	300	
	III	327-418	23.0	388	
	IV	418-565	38.3	542	0.3
32	Ι	101-291	16.7	265	
	II	291-463	34.2	395	
	III	463-629	41.9	563	7.1
33	Ι	39-225	28.6	44	
	II	225-416	25.6	355	
	III	416-614	42.4	508	3.5
34	Ι	49-245	19.6	80	
	II	245-384	16.8	264	
	III	384-530	23.5	460	
	IV	530-633	39.1	582	1.0
35	Ι	41-199	29.3	75	
	II	199-386	16.1	302	
	III	386-606	44.8	516	9.9
36	Ι	36-190	16.3	72	
	II	190-374	30.8	312	
	III	374-482	19.5	420	
	IV	482-592	22.9	498	10.5
37	Ι	55-145	11.0	82	
	II	145-381	27.9	280	
	III	381-509	13.5	428	
	IV	509-620	30.4	563	17.2
38	Ι	43-167	7.1	65	
	II	167-333	17.6	296	
	III	333-511	18.7	420	
	IV	511-662	33.2	580	23.4
39	Ι	37-202	16.5	80	
	II	202-378	37.0	271	

	III	378-529	18.8	456	
	IV	529-610	27.7	566	0
40	Ι	41-217	3.9	88	
	II	217-354	26.8	272	
	III	354-497	32.6	443	
	IV	497-641	28.7	565	8.0
41	Ι	62-176	5.1	76	
	II	176-289	15.0	266	
	III	289-393	21.1	326	
	IV	393-624	41.3	566	17.5
42	Ι	38-188	22.5	81	
	II	188-375	32.2	268	
	III	375-469	10.4	410	
	IV	469-628	31.1	544	3.9
43	Ι	39-117	8.8	76	
	II	117-205	6.6	156	
	III	205-378	25.5	282	
	IV	378-440	7.8	413	
	V	440-600	50.1	565	1.3
44	Ι	54-182	5.0	70	
	II	182-377	29.4	336	
	III	377-607	51.8	535	13.9
45	Ι	45-232	15.5	96	
	II	232-381	24.4	293	
	III	381-602	60.1	551	0
46	Ι	36-163	3.7	40	
	II	163-367	29.2	254	
	III	367-512	20.1	446	
	IV	512-660	34.9	586	12.2
47	Ι	34-206	13.9	73	
	II	206-408	20.7	312	
	III	408-640	48.2	564	17.2
48	Ι	54-232	15.1	82	
	II	232-376	23.4	326	
	III	376-640	51.1	496	10.4

Supp 3:

			ΔE^*					ΔS^*	
Compd	Peak	Slope	(KJ mol					(KJ mol	ΔH^*
_			1)	Α	В	N	Tm(K)	1)	$(KJ mol^{-1})$
25	А	-8.435	70.124	1.4	2.8	0.89	841	-0.249	-209.548
	В	-4.412	36.685	2.8	1.8	1.57	345	-0.240	-82.637
26	Α	-9.379	77.980	4.0	3.4	1.37	813	-0.248	-201.381
	В	-18.922	157.318	1.8	2.1	1.17	625	-0.237	-148.255
	С	-7.948	66.081	3.5	1.4	2.00	337	-0.234	-78.848
27	А	-6.444	53.575	1.9	4.1	0.86	833	-0.251	-209.305
	В	-14.377	119.530	1.7	1.2	1.50	513	-0.236	-121.148
	С	-5.326	44.282	2.2	1.8	1.39	337	-0.238	-80.034
28	А	-6.285	52.250	1.6	4.3	0.77	825	-0.251	-207.334
	В	-7.417	61.661	2.4	0.9	2.06	335	-0.235	-78.550
29	А	-7.267	60.415	1.7	3.9	0.83	831	-0.250	-207.930
	В	-22.482	186.915	1.1	0.7	1.58	528	-0.233	-122.867
	С	-8.146	67.723	2.1	1.6	1.44	341	-0.234	-79.781
30	А	-2.346	19.501	3.2	10.6	0.69	801	-0.259	-207.510
	В	-7.022	58.378	1.9	1.5	1.42	337	-0.235	-79.218
31	А	-8.069	67.086	4.8	14.7	0.72	797	-0.249	-198.161
	В	-4.172	34.689	3.3	1.2	2.09	653	-0.251	-163.790
	С	-8.925	74.202	2.4	1.2	1.78	329	-0.233	-76.494
32	А	-5.313	44.1740	1.4	5.5	0.64	841	-0.253	-212.810
	В	-6.825	56.741	2.6	0.9	2.14	335	-0.235	-78.797
33	А	-15.412	128.135	1.3	3.1	0.82	785	-0.243	-190.676
	В	-18.601	154.649	1.5	1.9	1.12	605	-0.237	-143.258
	С	-5.126	42.619	1.1	1.1	1.26	333	-0.238	-79.126
34	А	-12.819	106.577	1.8	2.9	0.99	854	-0.246	-209.993
	В	-4.846	40.286	6.2	1.8	2.34	345	-0.239	-82.358
35	Α	-5.892	48.989	1.3	4.3	0.69	811	-0.252	-204.022
	В	-9.351	77.743	2.6	3.0	1.17	773	-0.247	-190.834
	С	-7.122	59.210	2.0	1.5	1.46	341	-0.235	-80.187
36	Α	-8.969	74.564	1.7	3.4	0.89	773	-0.247	-191.107
	В	-5.911	49.145	3.5	0.9	2.48	333	-0.236	-78.712

Table S2: Thermodynamic parameters of kinetic data obtained from the nonisothermal decomposition of the prepared polymers 25-48

37	Α	-10.208	84.869	1.6	3.2	0.89	837	-0.248	-207.139
	В	-10.782	89.642	0.9	1.3	1.05	537	-0.240	-128.586
	С	-2.983	24.804	2.0	1.7	1.37	354	-0.243	-86.135
38	Α	-11.482	95.461	3.4	3.4	1.26	837	-0.247	-206.307
	В	-21.031	174.852	1.4	2.2	1.01	633	-0.237	-149.709
	С	-7.482	62.209	1.8	1.5	1.38	337	-0.235	-79.029
39	Α	-4.218	35.072	1.7	2.7	1.00	833	-0.255	-212.261
	В	-5.344	44.428	5.2	1.5	2.35	341	-0.238	-81.044
40	Α	-7.723	64.207	2.0	3.6	0.94	837	-0.250	-209.105
	В	-6.674	55.489	3.9	0.8	2.78	334	-0.235	-78.610
41	Α	-4.564	37.946	1.5	6.6	0.60	843	-0.254	-214.422
	В	-5.759	47.884	3.1	1.5	1.81	333	-0.237	-78.788
42	Α	-4.366	36.295	3.0	4.8	1.00	802	-0.254	-203.623
	В	-3.640	30.262	5.4	5.8	1.22	669	-0.252	-168.842
	С	-8.516	70.799	2.5	1.5	1.63	333	-0.233	-77.636
43	Α	-14.835	123.339	1.6	1.9	1.16	837	-0.244	-204.491
	В	-9.556	79.445	3.6	2.8	1.43	793	-0.247	-195.969
	С	-28.059	233.283	1.8	2.0	1.20	625	-0.234	-146.086
	D	-6.298	52.362	3.8	2.1	1.70	333	-0.236	-78.527
44	Α	-5.018	41.716	3.0	4.8	1.00	794	-0.253	-200.533
	В	-10.257	85.277	3.5	2.5	1.49	625	-0.243	-151.552
	С	-5.196	43.202	2.0	1.2	1.63	337	-0.238	-80.107
45	Α	-13.002	108.099	1.2	2.0	0.98	831	-0.245	-203.853
	В	-3.233	26.883	7.4	2.0	2.42	349	-0.242	-84.594
46	Α	-8.479	70.494	1.9	3.6	0.92	857	-0.249	-213.768
	В	-5.075	42.194	6.4	1.5	2.60	337	-0.238	-80.176
47	Α	-7.135	59.317	1.2	3.8	0.71	853	-0.251	-213.941
	В	-7.246	60.242	4.8	1.7	2.12	333	-0.235	-78.115
48	А	-5.263	43.760	1.5	5.0	0.69	753	-0.251	-189.206
	В	-5.123	42.595	5.8	1.7	2.33	345	-0.238	-82.191

Supp 4:

~	Thermal transition (°C)						
Compound -	Tg	Tc	Tm				
25	346		569.9				
26	328		567.6				
27	318		565.2				
28	324		578.5				
29	336		562.4				
30	366		567.3				
31	364		555.1				
32	348		577.2				
33	340		532.2				
34	340		583.7				
35	396		538.6				
36	300		505.1				
37	284		566.8				
38	308		578.2				
39	320		525.5				
40	336		569.1				
41	336		573.8				
42	280		573.6				
43		448	569.0				
44	332		529.6				
45	352		559.1				
46	264		587.8				
47	322		580.9				
48	376		507.7				

Table S3: Thermal transitions of polymers 25-48

. 10/06/2014

Figure 2: ¹H-NMR (DMSO-d₆) of 2,2'-(6-morpholino-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid 9.

Figure 3: ¹H-NMR (DMSO, D₂O) of 2,2'-(6-morpholino-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid 9.

Figure 4: IR (KBr) of 2,2'-(6-morpholino-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid **10**. C:\Program Files\OPUS_65\MEAS\MEAS\S a m a r SE 15.0 S a m a r SE 15 Instrument type and / or accessory 31/10/2013

Figure 5: ¹H-NMR (DMSO-d₆) of 2,2'-(6-morpholino-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid 10.

Figure 6: IR (KBr) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid **11**. C:\Program Files\OPUS_65\MEAS\MEAS\S a m a r S E 12.1 S a m a r S E 12 Instrument type and / or accessory 31/10/2013

Figure 7: ¹H-NMR (DMSO-d6) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid 11.

Figure 8: ¹H-NMR (DMSO, D₂O) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid 11.

Figure 9: ¹³C-NMR (DMSO-d₆) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid **11**.

Figure 10: IR (KBr) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid **12**. C:\Program Files\OPUS_65\MEAS\MEAS\MEAS\S a m a r S E 16.0 S a m a r S E 16 Instrument type and / or accessory 31/10/2013

Figure 11: ¹H-NMR (DMSO-d6) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid 12.

Figure 12: ¹³C-NMR (DMSO-d₆) of 2,2'-(6-(piperidin-1-yl)-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid 12.

 Figure 13: IR (KBr) of 2,2'-(6-(phenylamino)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid
 13.

 C:\Program Files\OPUS_65\MEAS\Dr Sheren E13.1
 Dr Sheren E13
 Instrument type and / or accessory
 10/06/2014

Figure 14: ¹H-NMR (DMSO-d6) of 2,2'-(6-(phenylamino)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid 13.

Figure 15: ¹H-NMR (DMSO, D₂O) of 2,2'-(6-(phenylamino)-1,3,5-triazine-2,4-diyl)bis(azanediyl)diacetic acid 13.

 Figure 16: IR (KBr) of 2,2'-(6-(phenylamino)-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid 14.

 C:\Program Files\OPUS_65\MEAS\Dr Sheren E12.0
 Dr Sheren E12

 Instrument type and / or accessory
 10/06/2014

Figure 17: ¹H-NMR (DMSO, D₂O) of 2,2'-(6-(phenylamino)-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)diacetic acid 14.

 Figure 18: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 25.

 C:\Program Files\OPUS_65\MEAS\Dr Sheren S2.0
 Dr Sheren S2
 Instrument type and / or accessory
 10/06/2014

Figure 19: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 25.

Figure 20: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 25.

Figure 21: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 25.

Figure 22: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 25.

 Figure 23: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 26.

 C:\Program Files\OPUS_65\MEAS\MEAS\MEAS\Dr Shreen \$10.0
 Dr Shreen \$10
 Instrument type and / or accessory
 05/08/2014

Figure 24: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 26.

Figure 25: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 26.

Figure 26: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 26.

Figure 27: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 26.

Figure 28: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **27**. C:\Program Files\OPUS_65\MEAS\Dr Sheren S0.0 Dr Sheren S0 Instrument type and / or accessory 10/06/2014

Figure 29: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 27.

Figure 30: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 27.

Figure 31: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 27.

Figure 32: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 27.

Figure 33: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino))-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] **28**. C:\Program Files\OPUS_65\MEAS\S 1 4.0 S 1 4 Instrument type and / or accessory 07/08/2014

Figure 34: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 28.

Figure 35: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 28.

Figure 36: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 28.

Figure 37: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 28.

Figure 38: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] **29**. C:\Program Files\OPUS_65\MEAS\S 1 8.0 S 1 8 Is instrument type and / or accessory 10/08/2014

Figure 39: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 29.

Figure 40: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 29.

Figure 41: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 29.

Figure 42: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 29.

 Figure 43: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 30.

 C:\Program Files\OPUS_65\MEAS\S 1 6.0
 S 1 6
 Instrument type and / or accessory
 07/08/2014

Figure 44: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 30.

Figure 45: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 30.

Figure 46: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 30.

Figure 47: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 30.

 Figure 48: IR (KBr) of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic

 C:\Program Files\OPUS_65\MEAS\MEAS\Dr Sheren S5.0
 Dr acid] 31.
 type and / or accessory
 05/08/2014

Figure 49: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 31.

Figure 50: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] **31**.

Figure 51: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 31.

Figure 52: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 31.

 Figure 53: IR (KBr) of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 32.

 C:\Program Files\OPUS_65\MEAS\MEAS\MEAS\Dr Shreen S12.0
 Dr Shreen S12
 Instrument type and / or accessory
 05/08/2014

Figure 54: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 32.

Figure 55: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 32.

Figure 56: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 32.

Figure 57: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 32.

 Figure 58: IR (KBr) of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic

 C:\Program Files\OPUS_65\MEAS\MEAS\Dr Sheren S4.0
 Dr Sheren S4
 Instrument type and / or accessory
 05/08/2014

 acid] 33.

Figure 59: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 33.

Figure 60: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **33**.

Figure 61: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 33.

Figure 62: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **33**.

Figure 63: IR (KBr) of poly[2
C:\Program Files\OPUS-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid]C:\Program Files\OPUS_65\MEAS\Dr Shreen S 27.0Dr Shreen S 2734.19/08/2014

Figure 64: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 34.

Figure 65: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] **34**.

Figure 66: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 34.

Figure 67: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 34.

Figure 68: IR (KBr) of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic C:\Program Files\OPUS_65\MEAS\MEAS\Dr Shreen S6.0 Dr Shreen S6 Instrument type and / or accessory 05/08/2014

Figure 69: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] **35**.

Figure 70: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] **35**.

Figure 71: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 35.

Figure 72: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 35.

 Figure 73: IR (KBr) of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid]

 C:\Program Files\OPUS_65\MEAS\MEAS\S
 1 9.0
 \$ 1 9
 Instrument 36. type and / or accessory
 10/08/2014

Figure 74: TGA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 36.

Figure 75: TGA/DTG of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] **36**.

Figure 76: DTA of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 36.

Figure 77: DSC of poly[2-(4-(2-(4'-aminobiphenyl-4-ylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 36.

Figure 78: IR (KBr) of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylamino)-1,3,5-triazin-2-ylamino)acetic acid] 37.C:\Program Files\OPUS_65\MEAS\Dr Sheren SE 11-P.0Dr Sheren SE 11-PInstrument type and / or accessory10/06/2014

Figure 79: TGA of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylamino)-1,3,5-triazin-2-ylamino)acetic acid] 37.

Figure 80: TGA/DTG of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylamino)-1,3,5-triazin-2-ylamino)acetic acid] 37.

Figure 81: DTA of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylamino)-1,3,5-triazin-2-ylamino)acetic acid] 37.

Figure 82: DSC of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylamino)-1,3,5-triazin-2-ylamino)acetic acid] 37.

 Figure 83: IR (KBr) of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylthio)-1,3,5-triazin-2-ylthio)acetic acid] 38.

 C:\Program Files\OPUS_65\MEAS\MEAS\MEAS\Dr Shreen S11.0
 Dr Shreen S11
 Instrument type and / or accessory
 05/08/2014

Figure 84: TGA of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylthio)-1,3,5-triazin-2-ylthio)acetic acid] 38.

Figure 85: TGA/DTG of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylthio)-1,3,5-triazin-2-ylthio)acetic acid] 38.

Figure 86: DTA of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylthio)-1,3,5-triazin-2-ylthio)acetic acid] 38.

Figure 87: DSC of poly[2-(4-morpholino-6-(2-oxo-2-(piperazin-1-yl)ethylthio)-1,3,5-triazin-2-ylthio)acetic acid] 38.

Figure 88: IR (KBr) of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **39**. C:\Program Files\OPUS_65\MEAS\Dr Sheren SE 12-P.0 Dr Sheren SE 12-P Instrument type and / or accessory 10/06/2014

Figure 89: TGA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 39.

Figure 90: TGA/DTG of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 39.

Figure 91: DTA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 39.

Figure 92: DSC of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 39.

Figure 93: IR (KBr) of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] **40**. C:\Program Files\OPUS_65\MEAS\S 1 5.0 S 1 5 Is Instrument type and / or accessory 07/08/2014

Figure 94: TGA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 40.

Figure 95: TGA/DTG of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 40.

Figure 96: DTA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 40.

Figure 97: DSC of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 40.

 Figure 98:
 IR (KBr) of poly[2-(4-(2-0x0-2-(piperazin-1-yl)ethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 41.

 C:\Program Files\OPUS_65\MEAS\MEAS\Dr Shreen S7.0
 Dr Shreen S7

 Instrument type and / or accessory
 05/08/2014

Figure 99: TGA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 41.

Figure 100: TGA/DTG of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 41.

Figure 101: DTA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 41.

Figure 102: DSC of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 41.

 Figure 103: IR (KBr) of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 42.

 C:\Program Files\OPUS_65\MEAS\S
 1 7.1
 S
 1 7
 Instrument type and / or accessory
 10/08/2014

Figure 104: TGA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 42.

Figure 105: TGA/DTG of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 42.

Figure 106: DTA of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 42.

Figure 107: DSC of poly[2-(4-(2-oxo-2-(piperazin-1-yl)ethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 42.

 Figure 108:
 IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid]
 43.

 C:\Program Files\OPUS_65\MEAS\Dr Sheren S3.0
 Dr Sheren S3
 Instrument type and / or accessory
 10/06/2014

Figure 109: TGA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 43.

Figure 110: TGA/DTG of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid]
43.

Figure 111: DTA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 43.

Figure 112: DSC of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-morpholino-1,3,5-triazin-2-ylamino)acetic acid] 43.

 Figure 113: IR (KBr) of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.

 C:\Program Files\OPUS_65\MEAS\MEAS\MEAS\Dr Shreen S13.0
 Dr Shreen S13
 Instrument type and / or accessory
 05/08/2014

Figure 114: TGA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.

Figure 115: TGA/DTG of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.

Figure 116: DTA of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.

Figure 117: DSC of poly[2-(4-(2-(2-aminoethylamino)-2-oxoethylthio)-6-morpholino-1,3,5-triazin-2-ylthio)acetic acid] 44.

 Figure 118: IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid]

 C:\Program Files\OPUS_65\MEAS\Dr Sheren S1.0
 Dr Sheren S1
 45instrument. type and / or accessory
 10/06/2014

Figure 119: TGA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 45.

Figure 120: TGA/DTG of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] **45**.

Figure 121: DTA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 45.

Figure 122: DSC of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylamino)acetic acid] 45.

 Figure 123: IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 46.

 C:\Program Files\OPUS_65\MEAS\Dr Shreen S 26.0
 Dr Shreen S 26
 Instrument type and / or accessory
 19/08/2014

Figure 124: TGA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 46.

Figure 125: TGA/DTG of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 46.

Figure 126: DTA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 46.

Figure 127: DSC of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(piperidin-1-yl)-1,3,5-triazin-2-ylthio)acetic acid] 46.

 Figure 128:
 IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid]

 C:\Program Files\OPUS_65\MEAS\MEAS\MEAS\Dr Shreen \$8.0
 Dr shreen 47. \$8

Figure 129: TGA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 47.

Figure 130: TGA/DTG of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 47.

Figure 131: DTA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 47.

Figure 132: DSC of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylamino)-6-(phenylamino)-1,3,5-triazin-2-ylamino)acetic acid] 47.

 Figure 133: IR (KBr) of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 48.

 C:\Program Files\OPUS_65\MEAS\Dr Shreen S25.0

 Dr Shreen S25

 Instrument type and / or accessory

 19/08/2014

Figure 134: TGA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 48.

Figure 135: TGA/DTG of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 48.

Figure 136: DTA of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 48.

Figure 137: DSC of poly[2-(4-(2-(4-aminophenylamino)-2-oxoethylthio)-6-(phenylamino)-1,3,5-triazin-2-ylthio)acetic acid] 48.

Page 1/1 Figure 138: IR (KBr) of Celecoxib (CXB)-loaded polymeric NPs CXB-26

Figure 139: IR (KBr) of Celecoxib (CXB)-loaded polymeric NPs CXB-43

Figure 140: IR (KBr) of Celecoxib (CXB)-loaded polymeric NPs CXB-44

Figure 141: IR (KBr) of Celecoxib (CXB)-loaded polymeric NPs CXB-45

Figure 142: IR (KBr) of Celecoxib (CXB)-loaded polymeric NPs CXB-46

Figure 143a, b: Particle size and Zeta potential of Celecoxib (CXB)-loaded polymeric NPs CXB-26 NPs

			Mean (mV)	Area (%)	St Dev (mV)	
Zeta Potential (mV):	-31.2	Peak 1:	-31.2	100.0	5.42	
Zeta Deviation (mV):	5.42	Peak 2:	0.00	0.0	0.00	
Conductivity (mS/cm):	0.0162	Peak 3:	0.00	0.0	0.00	

Result quality : Good

Figure 144a, b: Particle size and Zeta potential of Celecoxib (CXB)-loaded polymeric NPs CXB-43 NPs

			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (mV):	-24.2	Peak 1:	-24.2	100.0	5.32
Zeta Deviation (mV):	5.32	Peak 2:	0.00	0.0	0.00
Conductivity (mS/cm):	0.0142	Peak 3:	0.00	0.0	0.00

Result quality : Good

Figure 145a, b: Particle size and Zeta potential of Celecoxib (CXB)-loaded polymeric NPs CXB-44 NPs

			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (m/V):	-37.9	Peak 1:	-37.9	100.0	4.44
Zeta Deviation (mV):	4.44	Peak 2:	0.00	0.0	0.00
Conductivity (mS/cm):	0.0113	Peak 3:	0.00	0.0	0.00

Figure 146a, b: Particle size and Zeta potential of Celecoxib (CXB)-loaded polymeric NPs CXB-45 NPs:

			Mean (mV)	Area (%)	St Dev (mV)	
Zeta Potential (mV):	-32.9	Peak 1:	-32.9	100.0	4.57	
Zeta Deviation (mV):	4.57	Peak 2:	0.00	0.0	0.00	
Conductivity (mS/cm):	0.00753	Peak 3:	0.00	0.0	0.00	

Figure 147a, b: Particle size and Zeta potential of Celecoxib (CXB)-loaded polymeric NPs CXB-46 NPs

			Mean (mV)	Area (%)	St Dev (mV)
Zeta Potential (mV):	-27.0	Peak 1:	-27.4	98.0	5.74
Zeta Deviation (mV):	6.53	Peak 2:	-3.12	2.0	2.88
Conductivity (mS/cm):	0.0101	Peak 3:	0.00	0.0	0.00

Result quality : Good

