Supporting Information

Efficient symmetrical bidentate dioxime ligand-accelerated homogeneous palladium-catalyzed Suzuki-Miyaura coupling reaction of aryl chlorides

Jinyi Song, a,b Hongyan Zhao, a,b Yang Liu, a,b Huatao Han, a,b Zhuofei Li, a,b Wenyi Chu, a,b Zhizhong Sun a,b

a School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
b Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, Harbin 150080, P. R. China

Corresponding author. Fax +86-451-86609135
E-mail address: wenyichu@hlju.edu.cn

Experimental Section
Characterization
NMR Spectra for complexes and all Cross-Coupling Products
Experimental Section

Synthesis of 2, 3-dihydroxybenzaldehyde oxime (L₅) and its complex

1. 2, 3-dihydroxybenzaldehyde

Under nitrogen, redistilled POCl₃ (39.05 g, 0.059 mol) was slowly dropped in the dry N, N- dimethylformamide (4.75 g, 0.065 mol), and the mixture was stirred in ice bath for 1 h. Then a solution of catechol (4.95 g, 0.045 mol) in DMF was added. The reaction was stirred for 12 h at 40 °C and monitored by TLC. At the end of the reaction, the reaction mixture was poured into ice water with stirring, and the solid was precipitated. The aqueous layer was extracted with ethyl acetate, and the organic layer was washed with water 3 times, then dried over anhydrous Na₂SO₄. After removal of the solution, the residue was purified by recrystallized from benzene to give light yellow solid (3.8 g, 61%); m.p: 104~106 °C (literature value of 104~108 °C). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 10.20 (s, 1H, CHO), 9.92 (s, 2H, OH), 7.13 (dd, J = 7.6, 1.6 Hz, 1H, Ph), 7.07 (dd, J = 7.6, 1.6 Hz, 1H, Ph), 6.79 (t, J = 7.8 Hz, 1H, Ph). (Known compound, see: L. Liguori, T. Barth, J. Anal. Appl. Pyrol., 2011, 92, 479.).

2. 2, 3-dihydroxybenzaldehyde oxime

NaOH (0.408 g, 10.2 mmol) and NH₂OH·HCl (0.709 g, 10.2 mmol) were dissolved in 20 mL anhydrous ethanol in 50 mL four-necked flask, and NaCl was removed by filtration. 2, 3-dihydroxy-benzaldehyde (1.0 g, 7.2 mmol) was added to the filtrate, and the mixture was refluxed for 4 h and monitored by TLC. The solvent was evaporated to dryness to give a crude yellow product which was recrystallized from chloroform and dried to give yellow needles (0.93 g, 85%); m.p: 114 °C (literature values 114~115 °C). Selected IR (KBr pellet, cm⁻¹) : 3454(νO-H), 2981, 1641(νC=N), 1614, 1592, 1492, 1440, 741, 724. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 11.29 (s, 1H, C=N-OH), 9.38 (s, 2H, OH), 8.31 (s, 1H, HC=N), 6.92 (dd, J = 7.6, 1.2 Hz, 1H, Ph), 6.80 (dd, J = 8.0, 1.6 Hz, 1H, Ph), 6.68 (t, J = 7.6 Hz, 1H, Ph). (Known compound, see: A. Tarai, J. B. Baruah, CrystEngComm., 2015, 17, 2307.).

3. 2, 3-dihydroxybenzaldehyde oxime-complex

2
2, 3-dihydroxybenzaldehyde oxime (20 mg, 0.13 mmol) was dissolved in 8 mL CH₃CH₂OH, then a solution of PdCl₂ (11.58 mg, 0.065 mmol) in CH₃CH₂OH was added (8 mL), and the mixture was refluxed for 24 h. At the end of the reaction, the solid was filtered out and washed with CH₃CH₂OH two times to get yellow solid. Selected IR (KBr pellet, cm⁻¹): 3644(νO-H), 3035, 1628(νC=N), 1615, 1537, 1459, 1428, 751, 742. Anal. Calcd for 2, 3-dihydroxybenzaldehyde oxime complex (C₇H₇NO₃Pd): C, 32.39; H, 2.72; N, 5.40. Found: C, 32.43; H, 2.79; N, 5.38. HRMS (El) calcd for C₇H₇NO₃Pd (M⁺): 258.9461; found: 258.9458. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) =10.89 (s, 1H, C=N-OH), 8.93 (s, 1H, OH), 8.39 (s, 1H, HC=N), 6.93-6.54 (m, 3H, Ph). ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) =149.8, 148.4, 147.4, 124.1, 118.4, 116.8, 116.3. (Figure S1).

Synthesis of 2, 4-dihydroxybenzaldehyde oxime (L₆) and its complex

1. 2, 4-dihydroxybenzaldehyde

Resorcinol (4.95 g, 0.045 mol) was used as the raw material in the same method of 2, 3-dihydroxybenzaldehyde. The product was recrystallized from water to give milk white solid (4.0 g, 64%); m.p:130~134 °C (literature value of 134~136°C). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 10.73 (s, 1H, OH), 9.92 (s, 1H, CHO), 7.52 (d, J = 8.8 Hz, 1H), 6.39 (dd, J = 8.8, 2.4 Hz, 1H), 6.32 (d, J = 2.4 Hz, 1H). (Known compound, see: I. M. Downie, M. J. Earle, H. Heaney, K. F. Shuhaibar, Tetrahedron., 1993, 49, 4024.).

2. 2, 4-dihydroxybenzaldehyde oxime

2, 4-dihydroxy-benzaldehyde (1.0 g, 7.2 mmol) was used as the raw material in the same method of 2, 3-dihydroxybenzaldehyde oxime. The product was recrystallized from water to give white solid (1.05 g, 95%); m.p:191°C (literature value of 191~192°C). Selected IR (KBr pellet, cm⁻¹) : 3357 (νO-H), 2977, 1640(νC=N), 1612, 1590, 1500, 1448, 859, 821, 805. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm)
4 =10.96 (s, 1H, OH), 10.10 (s, 1H, C=N-OH), 9.74 (s, 1H, OH), 8.21 (s, 1H, HC=N), 7.25 (d, J = 9.2 Hz, 1H, Ph), 6.38 – 6.25 (m, 2H, Ph). (Known compound, see: A. Tarai, J. B. Baruah, RSC Adv., 2015, 5, 82145.)

3. 2, 4-dihydroxybenzaldehyde oxime-complex

2, 4-dihydroxybenzaldehyde oxime (20 mg, 0.13 mmol) was used in the same approach of 2, 3-dihydroxybenzaldehyde oxime-palladcycle. The product was yellow solid. Selected IR (KBr pellet, cm⁻¹) : 3388 (νO-H), 2924, 1627 (νC=N), 1597, 1549, 1501, 1441, 856, 832, 787. Anal. Calcd for 2, 4-dihydroxybenzaldehyde oxime complex (C₇H₇NO₃Pd): C, 32.39; H, 2.72; N, 5.40. Found: C, 32.47; H, 2.69; N, 5.45. HRMS (EI) calcd for C₇H₇NO₃Pd (M⁺): 258.9461; found: 258.9459. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) =10.17 (s, 1H, C=N-OH), 9.90 (s, 1H, OH), 8.23 (s, 1H, HC=N), 7.23 (d, J = 8.5 Hz, 1H, Ph), 6.45 (s, 1H, Ph), 6.21 (d, J = 8.5 Hz, 1H, Ph). ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 163.2, 162.1, 146.7, 135.3, 109.0, 107.1, 104.7. (Figure S2).

Synthesis of 2, 5-dihydroxybenzaldehyde oxime (L₇) and its complex

1. 2, 5-dihydroxybenzaldehyde

Hydroquinone (4.95 g, 0.045 mol) was used as the raw material in the same method of 2, 3-dihydroxybenzaldehyde. The product was purified by column chromatography (PE:EA=3:1) to give yellow solid (2.5 g, 40%); m.p:93 ~ 95 °C (literature value of 98 ~ 102 °C). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 10.18 (s, 1H, OH), 10.02 (s, 1H, CHO), 9.17 (s, 1H, OH), 7.01 – 6.95 (m, 2H, Ph), 6.31 (d, J = 8.4 Hz, 1H, Ph). (Known compound, see: M. L. Belyanin, E. V. Stepanova, V. D. Ogorodnikov, Carbohydr. Res., 2012, 363, 67.)

2. 2, 5-dihydroxybenzaldehyde oxime

2, 5-dihydroxybenzaldehyde (1.0 g, 7.2 mmol) was used as the raw material in the same method of 2, 3-dihydroxybenzaldehyde oxime. The product was purified by
column chromatography (PE:EA=2:1) to give yellow solid (0.74 g, 67%); m.p: 129 ~ 131 °C (literature value of 129 ~ 131 °C). Selected IR (KBr pellet, cm⁻¹): 3200 (ν O-H, 2991, 1646 (ν C=O), 1601, 1575, 1478, 1448, 843, 824. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 11.20 (s, 1H, C=N-OH), 9.35 (s, 1H, OH), 8.87 (s, 1H, OH), 8.24 (s, 1H, HC=N), 6.90 (d, J = 2.8 Hz, 1H, Ph), 6.72 - 6.63 (m, 2H, Ph). (Known compound, see: M. Beatriz, N. Martin, J. Org. Chem., 2000, 65, 5989.).

3. 2,5-dihydroxybenzaldehyde oxime-complex

2, 5-dihydroxybenzaldehyde oxime (20 mg, 0.13 mmol) was used in the same approach of 2, 5-dihydroxybenzaldehyde oxime-palladcycle. The product was dark yellow solid. Selected IR (KBr pellet, cm⁻¹): 3412 (ν O-H), 3028, 1626 (ν C=O), 1619, 1556, 1495, 1460, 1457, 851, 823. Anal. Calcd for 2, 5-dihydroxybenzaldehyde oxime complex (C₇H₇NO₃Pd): C, 32.39; H, 2.72; N, 5.40. Found: C, 32.42; H, 2.69; N, 5.43. HRMS (EI) calcd for C₇H₇NO₃Pd (M⁺): 258.9461; found: 258.9459. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 10.56 (s, 1H, C=N-OH), 8.78 (s, 1H, OH), 8.30 (s, 1H, HC=N), 6.93 (d, J = 8.4 Hz, 1H, Ph), 6.78 (d, J = 11.6 Hz, 2H, Ph). ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 153.7, 148.0, 147.1, 123.4, 120.3, 117.2, 115.6. (Figure S3).

Synthesis of 2, 5-dihydroxyterephthalaldehyde dioxime (L₈) and its complex

1. 2, 5-dihydroxyterephthalaldehyde

Under nitrogen, redistilled POCl₃ (18.10 g, 0.118 mol) was slowly dropped in the dry N, N- dimethylformamide (9.50 g, 0.13 mol), then added a solution of hydroquinone (4.95 g, 0.045 mol). The reaction was stirred for 24 h at 55 °C and monitored by TLC. The product was purified by column chromatography (PE:EA=3:1) to give yellow solid (2.0 g, 27%); m.p: 256 ~ 260 °C (literature value of 262 °C). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 10.28 (s, 2H, OH), 10.24 (s, 2H, CHO), 7.19
(s, 2H, Ph). (Known compound, see: K. B. Borisenko, K. Zauer, I. Hargittai, *J. Phys. Chem.*, 1996, 100, 19303.)

2. 2, 5-dihydroxyterephthalaldehyde dioxime

NaOH (1.632 g, 40.8 mmol) and NH₂OH·HCl (2.836 g, 40.8 mmol) were dissolved in 100 mL anhydrous ethanol in 250 mL four-necked flask, and NaCl was removed by filtration. 2, 5-dihydroxyterephthalaldehyde (1.0 g, 6.02 mmol) was added to the filtrate refluxed for 5 h, and the reaction was monitored by TLC. The product was purified by column chromatography (PE:EA=1:1) to give dark yellow solid (0.71 g, 60%); m.p: 252~255 °C. Selected IR (KBr pellet, cm⁻¹) : 3337(νO-H), 2996, 1651(νC=N), 1610, 1538, 1488, 1445, 953, 861, 788. Anal. Calcd for 2, 5-dihydroxyterephthalaldehyde dioxime: C, 48.98; H, 4.11; N, 14.28. Found: C, 49.08; H, 4.12; N, 14.24. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) =11.34 (s, 2H, C=N-OH), 9.49 (s, 2H, OH), 8.24 (s, 2H, HC=N), 7.05 (s, 2H, Ph). ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) =148.9, 146.3, 121.0, 113.5.

3. 2, 5-dihydroxyterephthalaldehyde dioxime-complex

2, 5-dihydroxyterephthalaldehyde dioxime (20 mg, 0.10 mmol) was dissolved in 8 mL CH₃CH₂OH, then a solution of PdCl₂ (9.04 mg, 0.051 mmol) in CH₃CH₂OH was added (8 mL), and the mixture was refluxed for 24 h. At the end of the reaction, the solid was filtered out and washed with CH₃CH₂OH two times to get dark red solid. Anal. Calcd for 2,5-dihydroxyterephthalaldehyde dioxime complex (C₈H₈N₂O₄Pd): C, 31.76; H, 2.67; N, 9.26. Found: C, 31.84; H, 2.61; N, 9.29. HRMS (EI) calcd for C₈H₈N₂O₄Pd (M⁺): 301.9519; found: 301.9516. Selected IR (KBr pellet, cm⁻¹) : 3451(νO-H), 3014, 1624(νC=N), 1589, 1506, 1462, 1457, 928, 884, 793. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) =11.54 (s, 1H, C=N-OH), 10.66 (s, 1H, C=N-OH), 9.33 (s, 1H, OH), 8.41 (s, 1H, HC=N), 8.22 (s, 1H, HC=N), 7.29 (s, 1H, Ph), 6.94 (s, 1H, Ph). ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) =150.0, 149.0, 146.4, 136.6, 124.4, 120.9, 113.7. (Figure S4).
Synthesis of 2, 4-dihydroxy-5-acetylacetophenone dioxime (L₉) and its complex

1. 2, 4-dihydroxy-5-acetylacetophenone

Resorcinol (1.10 g, 10 mmol), acetic anhydride (2.04 g, 20 mmol) and zinc chloride (2.72 g, 20 mmol) at 150 °C reaction for 30 min, and the solution was cooled to room temperature to give brick-red viscous liquid. The ice HCl solution was added with stirring, and the brick red precipitate was filtered. The product was recrystallized from methanol to give a solid (1.75 g, 90%); m.p: 178~180 °C (literature value 182 °C). ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) =12.73 (s, 2H, OH), 8.41 (s, 1H, Ph), 6.39 (s, 1H, Ph), 2.65 (s, 6H, CH₃). (Known compound, see: R. N. Butler, D. P. Shekky, Tetrahedron Lett., 1985, 26, 3402.)

2. 2, 4-dihydroxy-5-acetylacetophenone dioxime

NaOH (514.93 mg, 12.87 mmol) and NH₂OH·HCl (1.43 g, 20.60 mmol) were dissolved in 20 mL anhydrous ethanol in 50 mL four-necked flask, and NaCl was removed by filtration. 2, 4-hydroxy-5-acetyl acetophenone (1.0 g, 5.15 mmol) was added to the filtrate and refluxed for 4 h, and the reaction was monitored by TLC. The product was purified by column chromatography to give a pink solid (0.92 g, 80%); m.p: 251~253 °C (literature values 253~255 °C). Selected IR (KBr pellet, cm⁻¹): 3403(νO-H), 3031, 1639(νC=N), 1606, 1595, 1504, 1452, 884, 717. ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) =11.94 (s, 2H, C=N-OH), 11.30 (s, 2H, OH), 7.45 (s, 1H, Ph), 6.29 (s, 1H, Ph), 2.23 (s, 6H, CH₃). (Known compound, see: M. J. Raihan, V. Kavalalal, P. M. Habib, Q. Z. Guan, C. W. Kuo, C. F. Yao, J. Org. Chem., 2011, 76, 432.)

3. 2, 4-dihydroxy-5-acetylacetophenone dioxime-complex

2, 4-dihydroxy-5-acetylacetophenone dioxime (20 mg, 0.089 mmol) was dissolved in 8 mL CH₃CH₂OH, then a solution of PdCl₂ (7.91 mg, 0.045 mmol) in CH₃CH₂OH was added (8 mL), and the mixture was refluxed for 24 h. At the end of the reaction,
the solid was filtered out and washed with CH$_3$CH$_2$OH two times to get dark red solid. Selected IR (KBr pellet, cm$^{-1}$) : 3525($\nu_{\text{O-H}}$), 3055, 1626($\nu_{\text{C=N}}$), 1618, 1585, 1493, 1480, 824, 745. Anal. Calcd for 2, 4-dihydroxy-5-acetylacetophenone dioxime complex (C$_{10}$H$_{12}$N$_2$O$_4$Pd) C, 36.33; H, 3.66; N, 8.47. Found: C, 36.34; H, 3.57; N, 8.57. HRMS (EI) calcd for C$_{10}$H$_{12}$N$_2$O$_4$Pd (M$^+$): 329.9832; found: 329.9833. 1H NMR (400 MHz, DMSO-d_6): δ (ppm) = 11.99 (s, 1H, C=N-OH), 11.26 (s, 1H, C=N-OH), 10.58 (s, 1H, OH), 7.35 (s, 1H, Ph), 6.38 (s, 1H, Ph), 3.32 (s, 6H, CH$_3$). 13C NMR (100 MHz, DMSO-d_6): δ (ppm) = 159.7, 157.7, 128.2, 112.2, 104.0, 11.5. (Figure S5).

Characterization

Biphenyl (01): 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 7.66 – 7.62 (m, 4H), 7.49 (dd, J = 10.3, 4.8 Hz, 4H), 7.39 (ddd, J = 7.3, 3.9, 1.1 Hz, 2H). (Figure S6) (Known compound, see: H. Y. Liu, H. L. Liu, R. X. Li, H. Chen, Tetrahedron Lett., 2014, 55, 417.).

4-nitro-1, 1'-biphenyl (02): 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 8.28 (d, J = 8.8 Hz, 2H), 7.72 (d, J = 8.8 Hz, 2H), 7.64 – 7.59 (m, 2H), 7.45 (ddd, J = 10.9, 9.7, 5.7 Hz, 3H). (Figure S7) (Known compound, see: A. Dewan, U. Bora, G. Borah, Tetrahedron Lett., 2014, 55, 1691.).

[1, 1'-biphenyl]-4-carbaldehyde (03): 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 10.06 (s, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.2 Hz, 2H), 7.66 – 7.61 (m, 2H), 7.48 (t, J = 7.3 Hz, 2H), 7.45 – 7.39 (m, 1H). (Figure S8) (Known compound, see: J. P. Simeone, J. R. Sowa, Tetrahedron., 2007, 63, 12648.).

[1, 1'-biphenyl]-4-carbonitrile (04): 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 7.75 – 7.71 (m, 2H), 7.71 – 7.67 (m, 2H), 7.60 (dd, J = 5.3, 3.4 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.45 – 7.40 (m, 1H). (Figure S9) (Known compound, see: K. B. Manas, K. D. Swapan, P. Pradip, B. Rahul, Dalton Trans., 2012, 41, 1304.).

4-methyl-1, 1'-biphenyl (05): 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 7.61 (d, J = 7.3
Hz, 2H), 7.52 (d, J = 8.1 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 7.29 – 7.27 (m, 2H), 2.43 (s, 3H). (Figure S10) (Known compound, see: L. Wan, C. Cai, Catal. Commun., 2012, 24, 107.).

4-methoxy-1,1'-biphenyl (06): 1H NMR (400 MHz, CDCl₃) δ (ppm) =7.55 (t, J = 8.3 Hz, 4H), 7.42 (t, J = 7.6 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 3.86 (s, 3H). (Figure S11) (Known compound, see: K. W. Quasdorf, A. A. Finch, P. Liu, A. L. Silberstein, A. Komaromi, T. Blackburn, S. D. Ramgren, K. N. Houk, V. Snieckus, N. K. Garg, J. Am. Chem. Soc., 2011, 133, 6353.).

3-methoxy-1,1'-biphenyl (07): 1H NMR (400 MHz, CDCl₃) δ (ppm) =7.66 – 7.63 (m, 2H), 7.48 (dd, J= 10.3, 4.7 Hz, 2H), 7.40 (dt, J= 7.3, 3.3 Hz, 2H), 7.24 (d, J = 7.7 Hz, 1H), 7.20 – 7.18 (m, 1H), 6.95 (dd, J= 8.2, 2.2 Hz, 1H), 3.90 (s, 3H). (Figure S12) (Known compound, see: I. Hoffmann, B. Blumenröder, S. O. Thumann, S. Dommer, J. Schatz, Green. Chem., 2015, 17, 3847.).

2-methoxy-1,1'-biphenyl (08): 1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.53 (m, 2H), 7.52 (m, 2H), 7.40 – 7.25 (m, 3H), 7.03 – 7.00 (m, 2H), 3.81 (s, 3H). (Figure S13) (Known compound, see: C. Liu, Q. Ni, P. Hu, J. Qiu, Org. Biomol. Chem., 2011, 9, 1054.).

2-nitro-1,1'-biphenyl (09): 1H NMR (400 MHz, DMSO-d₆) δ (ppm) = 7.99 (dd, J = 8.1, 1.1 Hz, 1H), 7.78 (td, J = 7.6, 1.3 Hz, 1H), 7.65 (td, J = 8.0, 1.4 Hz, 1H), 7.58 (dd, J = 7.7, 1.3 Hz, 1H), 7.51 – 7.43 (m, 3H), 7.39 – 7.33 (m, 2H). (Figure S14) (Known compound, see: Y. B. Yuan, J. Nie, Z. B. Zhang, S. J. Wang, Appl. Catal. A., 2005, 295, 171.).

3, 4-dimethoxy-1,1'-biphenyl (10): 1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.58 – 7.54 (m, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (d, J = 7.4 Hz, 1H), 7.17 – 7.11 (m, 2H), 6.95 (d, J = 8.2 Hz, 1H), 3.95 (s, 3H), 3.93 (s, 3H). (Figure S15) (Known compound, see: V. Percec, G. M. Golding, J. Smidrkal, O. Weichold, J. Org. Chem., 2004, 69, 3451.).

3, 4-bis(benzyloxy)-1,1'-biphenyl (11): 1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.47 (t, J= 5.9 Hz, 6H), 7.37 (t, J= 7.5 Hz, 6H), 7.31 (t, J = 7.3 Hz, 3H), 7.20 (d, J = 2.0 Hz, 1H), 7.13 – 7.10 (m, 1H), 7.00 (d, J= 8.3 Hz, 1H), 5.21 (d, J= 7.6 Hz, 4H). (Figure
4-methyl-4'-((trifluoromethyl)-1,1'-biphenyl (12): 1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.67 (s, 4H), 7.50 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 2.41 (s, 3H).

4-methoxy-4'-((trifluoromethyl)-1,1'-biphenyl (13): 1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.70 - 7.60 (m, 4H), 7.58 - 7.50 (m, 2H), 7.04 - 6.96 (m, 2H), 3.86 (s, 3H).

4-nitro-4'-((trifluoromethyl)-1,1'-biphenyl (14): 1H NMR (400 MHz, CDCl₃) δ (ppm) = 8.34 (d, J = 8.7 Hz, 2H), 7.79 - 7.71 (m, 6H). (Figure S19) (Known compound, see: W. Y. Chu, X. M. Li, Y. J. Hou, H. Wang, X. B. Yuan, H. Y. Li, Z. Z. Sun, Appl. Organometal. Chem., 2012, 26, 478.).

4'-((trifluoromethyl)-[1,1'-biphenyl]-4-carbaldehyde (15): 1H NMR (400 MHz, CDCl₃) δ (ppm) = 10.09 (s, 1H), 8.00 (d, J = 8.2 Hz, 2H), 7.79 - 7.74 (m, 6H). (Figure S20) (Known compound, see: L. Adak, N. Yoshikai, J. Org. Chem., 2011, 76, 7565.).

4'-((trifluoromethyl)-[1,1'-biphenyl]-4-carbonitrile (16): 1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.76 (t, J = 9.0 Hz, 4H), 7.70 (d, J = 8.2 Hz, 4H). (Figure S21) (Known compound, see: M. Wang, X. B. Yuan, H. Y. Li, L. M. Ren, Z. Z. Sun, Y. J. Hou, W. Y. Chu, Catal. Commun., 2015, 58, 156.).

4-methoxy-4'-methyl-1,1'-biphenyl (17): 1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.57 - 7.51 (m, 2H), 7.48 (d, J = 8.1 Hz, 2H), 7.29 (s, 2H), 7.02 - 6.97 (m, 2H), 3.88 (s, 3H), 2.41 (s, 3H). (Figure S22) (Known compound, see: J. J. Ning, J. F. Wang, Z. G. Ren, D. J. Young, J. P. Lang, Tetrahedron., 2015, 71, 4003.).

4'-methoxy-[1,1'-biphenyl]-4-carbonitrile (18): 1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.70 (d, J= 8.0 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 3.87 (s, 3H). (Figure S23) (Known compound, see: Y. Kitamura, A. Sakurai, T. Uduz, T. Maegawa, Y. Monguchi, H. Sajiki, Tetrahedron, 2007, 63, 10597.).
3, 4-bis(benzyloxy)-4'-methoxy-1,1'-biphenyl (19): White solid. m.p: 98 ~ 102 °C.
1H NMR (400 MHz, DMSO-d$_6$) δ (ppm)=7.57 – 7.26 (m, 13H), 7.16 – 7.05 (m, 2H), 7.01 – 6.94 (m, 2H), 5.23 (s, 2H), 5.16 (s, 2H), 3.78 (s, 3H).
13C NMR (100 MHz, DMSO-d$_6$) δ (ppm) =158.9, 149.0, 147.8, 137.9, 137.8, 133.7, 132.8, 128.8, 128.2, 128.0, 127.9, 127.9, 119.2, 115.4, 114.7, 113.2, 70.6, 70.6, 55.6. Anal. Calcd for 3, 4-bis(benzyloxy)-4'-methoxy-1,1'-biphenyl (C$_{27}$H$_{24}$O$_3$): C, 81.79; H, 6.10. Found: C, 81.73; H, 6.19. HRMS (EI) calcd for C$_{27}$H$_{24}$O$_3$(M$^+$): 396.1725; found: 396.1720. (Figure S24)

3, 4-bis(benzyloxy)terphenyl (20): White solid. m.p: 138 ~ 142 °C.
1H NMR (400 MHz, DMSO-d$_6$) δ (ppm)=7.72 (s, 3H), 7.72 – 7.67 (m, 3H), 7.51 – 7.48 (m, 4H), 7.48 – 7.33 (m, 9H), 7.33 – 7.21 (m, 2H), 7.15 (d, J = 8.4 Hz, 1H), 5.27 (s, 2H), 5.19 (s, 2H).
13C NMR (100 MHz, DMSO-d$_6$) δ (ppm) =149.0, 148.5, 140.1, 139.4, 139.0, 137.9, 137.8, 134.9, 133.2, 129.4, 129.4, 128.9, 128.2, 128.2, 127.9, 127.9, 127.7, 127.5, 127.3, 127.0, 115.3, 70.6, 70.5. Anal. Calcd for 3, 4-bis(benzyloxy)terphenyl (C$_{32}$H$_{26}$O$_2$): C, 86.85; H, 5.92. Found: C, 86.83; H, 6.01. HRMS (EI) calcd for C$_{32}$H$_{26}$O$_2$(M$^+$): 442.1933; found: 442.1930. (Figure S25)

3', 5'-Difluoro-2-nitro-1, 1'-biphenyl (21): Yellow oil.
1H NMR (400 MHz, DMSO-d$_6$) δ (ppm)=8.07 (dd, J = 8.1, 1.1 Hz, 1H), 7.81 (td, J = 7.6, 1.2 Hz, 1H), 7.70 (td, J = 7.9, 1.4 Hz, 1H), 7.58 (dd, J = 7.7, 1.5 Hz, 1H), 7.30 (tt, J = 9.4, 2.3 Hz, 1H), 7.13 (dd, J = 8.3, 2.2 Hz, 2H).
13C NMR (100 MHz, DMSO-d$_6$) δ (ppm) =162.7, 162.6, 148.7, 141.2, 133.8, 133.6, 132.2, 130.2, 124.9, 112.0, 111.8, 104.1. Anal. Calcd for 3', 5'-Difluoro-2-nitro-1, 1'-biphenyl (C$_{12}$H$_7$F$_2$NO$_2$): C, 61.28; H, 3.00; F, 16.16; N, 5.96. Found: C, 61.20; H, 3.01; F, 16.10; N, 5.95. HRMS (EI) calcd for C$_{12}$H$_7$F$_2$NO$_2$(M$^+$): 235.0445; found: 235.0440. (Figure S26)

4-nitro-2', 5'-dimethyl-[1,1'-biphenyl] (22): 1H NMR (500 MHz, CDCl$_3$) δ (ppm) =8.28 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 7.9 Hz, 2H), 7.19 (s, 2H), 7.15 (s, 1H), 7.04 (s, 1H), 2.37 (s, 3H), 2.23 (s, 3H). (Figure S27) (Known compound, see: W. Y. Chu, X. M. Li, Y. J. Hou, H. Wang, X. B. Yuan, H. Y. Li, Z. Z. Sun, Appl. Organometal. Chem., 2012, 26, 478.)
4-methyl-3', 4'-dimethoxy-1', 1'-biphenyl (23): 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 7.46 (d, $J = 8.1$ Hz, 2H), 7.23 (d, $J = 7.9$ Hz, 2H), 7.13 (dd, $J = 8.2$, 2.1 Hz, 1H), 7.10 (d, $J = 2.0$ Hz, 1H), 6.94 (d, $J = 8.2$ Hz, 1H), 3.95 (s, 3H), 3.92 (s, 3H), 2.39 (s, 3H). (Figure S28) (Known compound, see: B. H. Lipshutz, T. Butler, E. Swift, Org. Lett., 2008, 10, 698.).

2'-methyl-1,1'-biphenyl (24): 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 7.57 – 7.53 (m, 2H), 7.50 – 7.45 (m, 3H), 7.43 – 7.37 (m, 4H), 2.42 (s, 3H). (Figure S29) (Known compound, see: R. C. Huang, K. H. Shaughnessy, Organometallics., 2006, 25, 4108.).

4-methoxyl-2'-methyl-1,1'-biphenyl (25): 1H NMR (400 MHz, CDCl$_3$) δ (ppm) = 7.35 – 7.26 (m, 6H), 7.05 – 6.98 (m, 2H), 3.90 (s, 3H), 2.35 (s, 3H). (Figure S30) (Known compound, see: Y. T. Huang, X. Tang, Y. Yang, D. S. Shen, C. Tan, F. S. Liu, Appl. Organomet. Chem., 2012, 26, 704.).

4-formyl-2'-methyl-1,1'-biphenyl (26): 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm) = 10.08 (s, 1H), 7.99 (d, $J = 8.0$ Hz, 2H), 7.59 (d, $J = 8.0$ Hz, 2H), 7.38 – 7.24 (m, 4H), 2.25 (s, 3H). (Figure S31) (Known compound, see: Y. T. Huang, X. Tang, Y. Yang, D. S. Shen, C. Tan, F. S. Liu, Appl. Organomet. Chem., 2012, 26, 705.).

4-nitro-2'-methyl-1,1'-biphenyl (27): 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm) = 8.27 (d, $J = 8.6$ Hz, 2H), 7.63 (d, $J = 8.6$ Hz, 2H), 7.36 – 7.24 (m, 4H), 2.23 (s, 3H). (Figure S32) (Known compound, see: Maddali L. N. Rao, Ritesh J. Dhanorkar, RSC adv., 2016, 6, 1015.).

2-nitro-2'-methyl-1,1'-biphenyl (28): 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm) = 8.02 (d, $J = 9.0$ Hz, 1H), 7.75 (t, $J = 7.5$ Hz, 1H), 7.63 (t, $J = 8.4$ Hz, 1H), 7.39 (d, $J = 7.5$ Hz, 1H), 7.32 – 7.19 (m, 3H), 7.05 (d, $J = 7.4$ Hz, 1H), 2.01 (s, 3H). (Figure S33) (Known compound, see: Maddali L. N. Rao, Ritesh J. Dhanorkar, RSC adv., 2016, 6, 1015.).

1-phenyl-1'-naphthalene (29): 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm) = 8.00 (d, $J = 8.1$ Hz, 1H), 7.95 (d, $J = 8.2$ Hz, 1H), 7.87 (d, $J = 8.4$ Hz, 1H), 7.61 – 7.39 (m, 9H). (Figure S34) (Known compound, see: M. Gholinejad, F. Hamed, P. Biji, Dalton Trans., 2015, 44, 14299.).
4-methoxy-1-phenyl-1'-naphthalene (30): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) = 7.93 (dd, \(J = 12.0, 8.3\) Hz, 2H), 7.86 (d, \(J = 8.2\) Hz, 1H), 7.47 (dt, \(J = 27.5, 8.1\) Hz, 6H), 7.05 (d, \(J = 8.6\) Hz, 2H), 3.91 (s, 3H). (Figure S35) (Known compound, see: S. N. Jadhav, A. S. Kumbhar, C. V. Rode, R. S. Salunkhe, *Green Chem.*, 2016, 18, 1904.).

4-(naphthalen-1-yl)benzaldehyde (31): \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) (ppm) = 10.13 (s, 1H), 8.10 – 8.00 (m, 4H), 7.75 (dd, \(J = 20.1, 8.2\) Hz, 3H), 7.65 – 7.47 (m, 4H). (Figure S36) (Known compound, see: S. N. Jadhav, A. S. Kumbhar, C. V. Rode, R. S. Salunkhe, *Green Chem.*, 2016, 18, 1904.).

1-phenyl-2'-naphthalene (32): \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) (ppm) = 8.24 (s, 1H), 8.06 – 8.01 (m, 2H), 8.00 – 7.94 (m, 1H), 7.90 – 7.82 (m, 3H), 7.60 – 7.51 (m, 4H), 7.43 (t, \(J = 7.4\) Hz, 1H). (Figure S37) (Known compound, see: R. F. Alamdari, M. G. Haqiqi, N. Zekri, *New J. Chem.*, 2016, 40, 1293.).

3, 4-bis(benzyloxy)-1-phenyl-2'-naphthalene (33): White solid. m.p: 102 ~ 104 °C.

\(^1\)H NMR(400 MHz, DMSO-d\(_6\)) \(\delta\) (ppm) = 8.17 (d, \(J = 1.8\) Hz, 1H), 8.02 – 7.90 (m, 3H), 7.83 (dd, \(J = 8.6, 1.9\) Hz, 1H), 7.60 – 7.47 (m, 7H), 7.47 – 7.27 (m, 7H), 7.20 (d, \(J = 8.4\) Hz, 1H), 5.30 (s, 2H), 5.23 (s, 2H).

\(^{13}\)C NMR (100 MHz, DMSO-d\(_6\)) \(\delta\) (ppm) = 149.1, 148.6, 137.9, 137.8, 137.7, 133.8, 133.6, 132.4, 128.9, 128.7, 128.5, 128.2, 128.1, 128.0, 127.9, 126.8, 126.3, 125.5, 125.0, 120.2, 115.4, 113.8, 70.7, 70.6. Anal. Calcd for 3, 4-bis(benzyloxy)-1-phenyl-2'-naphthalene (C\(_{30}\)H\(_{24}\)O\(_2\)): C, 86.51; H, 5.81. Found: C, 86.45; H, 5.79. HRMS (EI) calcd for C\(_{30}\)H\(_{24}\)O\(_2\) (M\(^+\)): 416.1776; found: 416.1774. (Figure S38)

2-benzyloxy-4-methoxy-1-phenyl-2'-naphthalene (34): White solid. m.p: 79 ~ 83 °C. \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) (ppm) = 8.00 (d, \(J = 1.7\) Hz, 1H), 7.89 (dd, \(J = 8.7, 6.3\) Hz, 3H), 7.70 (dd, \(J = 8.6, 1.8\) Hz, 1H), 7.49 (qd, \(J = 7.0, 3.4\) Hz, 2H), 7.44 – 7.22 (m, 6H), 6.82 (d, \(J = 2.4\) Hz, 1H), 6.69 (dd, \(J = 8.4, 2.4\) Hz, 1H), 5.17 (d, \(J = 4.1\) Hz, 2H), 3.82 (s, 3H). \(^{13}\)C NMR (100 MHz, DMSO-d\(_6\)) \(\delta\) (ppm) = 160.6, 156.7, 137.5, 136.1, 133.5, 132.1, 131.8, 129.0, 128.8, 128.5, 128.2, 128.1, 127.9, 127.8, 127.8, 127.4, 126.5, 126.1, 123.1, 106.3, 100.9, 70.2, 55.8. Anal. Calcd for 2-benzyloxy-4-methoxy-1-phenyl-2'-naphthalene (C\(_{24}\)H\(_{20}\)O\(_2\)): C, 84.68; H, 5.92. Found: C, 84.70; H, 6.01. HRMS (EI) calcd for C\(_{24}\)H\(_{20}\)O\(_2\) (M\(^+\)): 340.1463; found: 340.1466. (Figure S39)
2, 6-diphenylpyridine (35): 1H NMR (400 MHz, DMSO-d$_6$) δ (ppm)=8.24 – 8.18 (m, 4H), 8.00 – 7.91 (m, 3H), 7.57 – 7.50 (m, 4H), 7.50 – 7.43 (m, 2H). (Figure S40) (Known compound, see: J. L. Bolliger, C. M. Frech, *Adv. Synth. Catal.*, 2010, 352, 1077.).

NMR Spectra for complexes and all Cross-Coupling Products
Figure S1. 1H and 13C-NMR spectra of 2, 3-dihydroxybenzaldehyde oxime-complex
Figure S2. 1H and 13C-NMR spectra of 2, 4-dihydroxybenzaldehyde oxime-complex
Figure S3. 1H and 13C-NMR spectra of 2, 5-dihydroxybenzaldehyde oxime-complex
Figure S4. 1H and 13C-NMR spectra of 2, 5-dihydroxyterephthalaldehyde dioxime-complex
Figure S5. 1H and 13C-NMR spectra of 2, 4-dihydroxy-5-acetyacetophenone dioxime-complex
Figure S6. 1H-NMR spectra of Biphenyl

Figure S7. 1H-NMR spectra of 4-nitro-1, 1'-biphenyl
Figure S8. 1H-NMR spectra of [1, 1'-biphenyl]-4-carbaldehyde

Figure S9. 1H-NMR spectra of [1, 1'-biphenyl]-4-carbonitrile
Figure S10. 1H-NMR spectra of 4-methyl-1', 1'-biphenyl

Figure S11. 1H-NMR spectra of 4-methoxy-1', 1'-biphenyl
Figure S12. 1H-NMR spectra of 3-methoxy-1, 1'-biphenyl

Figure S13. 1H-NMR spectra of 2-methoxy-1, 1'-biphenyl
Figure S14. 1H-NMR spectra of 2-nitro-1, 1'-biphenyl

Figure S15. 1H-NMR spectra of 3, 4-dimethoxy-1, 1'-biphenyl
Figure S16. 1H-NMR spectra of 3, 4-bis(benzyloxy)-1, 1'-biphenyl

Figure S17. 1H-NMR spectra of 4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl
Figure S18. 1H-NMR spectra of 4-methoxy-4'-((trifluoromethyl))-1,1'-biphenyl

Figure S19. 1H-NMR spectra of 4-nitro-4'-((trifluoromethyl))-1,1'-biphenyl
Figure S20. 1H-NMR spectra of 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-carboxaldehyde

Figure S21. 1H-NMR spectra of 4'- (trifluoromethyl)-[1,1'-biphenyl]-4-carbonitrile
Figure S22. 1H-NMR spectra of 4-methoxy-4'-methyl-1,1'-biphenyl

Figure S23. 1H-NMR spectra of 4'-methoxy-[1,1'-biphenyl]-4-carbonitrile
Figure S24. 1H and 13C-NMR spectra of 3, 4-bis(benzyloxy)-4-methoxy-1,1'-biphenyl
Figure S25. 1H and 13C-NMR spectra of 3, 4-bis(benzyloxy)terphenyl
Figure S26. 1H and 13C-NMR spectra of 3', 5'-Difluoro-2-nitro-1, 1'-biphenyl
Figure S27. 1H-NMR spectra of 4-nitro-2', 5'-dimethyl-[1,1'-biphenyl]

Figure S28. 1H-NMR spectra of 4-methyl-3', 4'-dimethoxy-1, 1'-biphenyl
Figure S29. 1H-NMR spectra of 2'-methyl-1,1'-biphenyl

Figure S30. 1H-NMR spectra of 4-methoxy-2'-methyl-1,1'-biphenyl
Figure S31. 1H-NMR spectra of 4-formyl-2'-methyl-1,1'-biphenyl

Figure S32. 1H-NMR spectra of 4-nitro-2'-methyl-1,1'-biphenyl
Figure S33. 1H-NMR spectra of 2-nitro-2'-methyl-1,1'-biphenyl

Figure S34. 1H-NMR spectra of 1-phenyl-1'-naphthalene
Figure S35. 1H-NMR spectra of 4-methoxy-1-phenyl-1'-naphthalene

Figure S36. 1H-NMR spectra of 4-(naphthalen-1-yl)benzaldehyde
Figure S37. 1H-NMR spectra of 1-phenyl-2'-naphthale
Figure S38. 1H and 13C-NMR spectra of 3, 4-bis(benzyloxy)-1-phenyl-2'-naphthalene
Figure S39. 1H and 13C-NMR spectra of 2-benzyloxy-4-methoxy-1-phenyl-2'-naphthalene

Figure S40. 1H-NMR spectra of 2, 6-diphenylpyridine 1H-NMR