A Comprehensive Study of Substituent Effects on Poly(dibenzofulvene)s

Michael Y. Wong* and Louis M. Leung

Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China. E-mail: myw1011@gmail.com

Content

Figure S1. 1H NMR spectrum of 2-N,N-dimethylaminodibenzofulvene in CDCl$_3$

Figure S2. 13C NMR spectrum of 2-N,N-dimethylaminodibenzofulvene in CDCl$_3$

Figure S3. HRMS (MALDI-TOF) spectrum of 2-N,N-dimethylaminodibenzofulvene

Figure S4. 1H NMR spectrum of 2-fluorodibenzofulvene in CDCl$_3$

Figure S5. 13C NMR spectrum of 2-fluorodibenzofulvene in CDCl$_3$

Figure S6. 1H NMR spectrum of poly(FDBF) in CDCl$_3$

Figure S7. 1H NMR spectrum of poly(MeODBF) in CDCl$_3$

Figure S8. 1H NMR spectrum of poly(NMe2DBF) in CDCl$_3$

Figure S9. GPC traces of some substituted poly(DBF)s

Figure S10. Comparison of IR spectra between poly(CNDBF) (both soluble and insoluble fractions) and 2-cyanofluorene with peak assignments

Figure S11. Comparison of IR spectra between poly(NO2HexOBDHF) and 2-hexoxy-7-nitrofluorene with peak assignments

Figure S12. Normalized absorption spectra of some substituted poly(DBF)s in THF

Figure S13. Normalized emission spectra of some substituted poly(DBF)s in THF

Figure S14. Normalized absorption spectra of poly(BrHexOBDHF) and 2-bromo-7-hexoxyfluorene in THF
Figure S15. Normalized emission spectra of poly(BrHexODBF) and 2-bromo-7-hexoxyfluorene in THF

Figure S16. Normalized emission spectra of poly(CNDBF) and 2-cyano7-fluorene in THF

Figure S17. Cyclic voltammograms of some substituted poly(DBF)s in THF with 0.1 M n-Bu₄NPF₆ as the supporting electrolyte

Figure S18. Cyclic voltammograms of poly(NMe2DBF)s in THF with 0.1 M n-Bu₄NPF₆ as the supporting electrolyte

Figure S19. GPC traces of poly(DBF) after annealing (top, in blue) and before annealing (bottom, in red)

Table S1. Electrochemical data of the substituted poly(DBF)s.

Figure S1. ¹H NMR spectrum of 2-N,N-dimethylaminodibenzofulvene in CDCl₃.
Figure S2. 13C NMR spectrum of 2-N,N-dimethylaminodibenzofulvene in CDCl$_3$.

Figure S3. HRMS (MALDI-TOF) spectrum of 2-N,N-dimethylaminodibenzofulvene.
Figure S4. 1H NMR spectrum of 2-fluorodibenzofulvene in CDCl$_3$.

Figure S5. 13C NMR spectrum of 2-fluorodibenzofulvene in CDCl$_3$.

Page S4
Figure S6. 1H NMR spectrum of poly(FDBF) in CDCl$_3$.

Figure S7. 1H NMR spectrum of poly(MeODBF) in CDCl$_3$.
Figure S8. 1H NMR spectrum of poly(NMe2DBF) in CDCl$_3$.

Figure S9. GPC traces of some substituted poly(DBF)s.
Figure S10. Comparison of IR spectra between poly(CNDBF) (both soluble and insoluble fractions) and 2-cyanofluorene with peak assignments. The spectra suggest that both fractions contain same chemical composition.

Figure S11. Comparison of IR spectra between poly(NO2HexODBF) and 2-hexoxy-7-nitrofluorene with peak assignments.
Figure S12. Normalized absorption spectra of some substituted poly(DBF)s in THF. Arrows indicate the lowest-energy absorption peak wavelengths.

Figure S13. Normalized emission spectra of some substituted poly(DBF)s in THF. Arrows indicate the defect emissions.
Figure S14. Normalized absorption spectra of poly(BrHexODBF) and 2-bromo-7-hexoxyfluorene in THF.

Figure S15. Normalized emission spectra of poly(BrHexODBF) and 2-bromo-7-hexoxyfluorene in THF. Arrow indicates the emission of defect in the polymer which matches the emission maximum of 2-bromo-7-hexoxyfluorene.
Figure S16. Normalized emission spectra of poly(CNDBF) and 2-cyanofluorene in THF. The arrow indicates the emission of the stereochemical defect in the polymer which matches the emission maximum of 2-cyanofluorene. Note the excimer emission strongly outweighs that of the defects despite the low molecular weight of the polymer.
Figure S17. Cyclic voltammograms of some substituted poly(DBF)s in THF with 0.1 M n-Bu$_4$NPF$_6$ as the supporting electrolyte. Arrows indicate oxidation potentials.

Figure S18. Cyclic voltammograms of poly(NMe2DBF)s in THF with 0.1 M n-Bu$_4$NPF$_6$ as the supporting electrolyte.
Figure S19. GPC traces of poly(DBF) after annealing (top, in blue) and before annealing (bottom, in red).

Table S1. Electrochemical data of the substituted poly(DBF)s.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>ΔE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(DBF)</td>
<td>-5.66</td>
<td>-1.79</td>
<td>3.87</td>
</tr>
<tr>
<td>Poly(MeODBF)</td>
<td>-5.61</td>
<td>-1.96</td>
<td>3.70</td>
</tr>
<tr>
<td>Poly(NMe2DBF)</td>
<td>-5.01</td>
<td>-1.90</td>
<td>3.11</td>
</tr>
<tr>
<td>Poly(FDBF)</td>
<td>-5.76</td>
<td>-1.91</td>
<td>3.85</td>
</tr>
<tr>
<td>Poly(BrDBF)</td>
<td>-5.86</td>
<td>-2.05</td>
<td>3.81</td>
</tr>
<tr>
<td>Poly(IDBF)</td>
<td>-5.83</td>
<td>-2.07</td>
<td>3.76</td>
</tr>
<tr>
<td>Poly(CNDBF)</td>
<td>-5.93</td>
<td>-2.58</td>
<td>3.35</td>
</tr>
<tr>
<td>Poly(NO2DBF)</td>
<td>-6.07</td>
<td>-3.12</td>
<td>2.95</td>
</tr>
<tr>
<td>Poly(NO2PrODBF)</td>
<td>-5.75</td>
<td>-3.14</td>
<td>2.61</td>
</tr>
<tr>
<td>Poly(NO2HexODBF)</td>
<td>-5.66</td>
<td>-3.07</td>
<td>2.59</td>
</tr>
<tr>
<td>Poly(BrMeODBF)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Poly(BrPrODBF)</td>
<td>-5.64</td>
<td>-1.97</td>
<td>3.70</td>
</tr>
<tr>
<td>Poly(BrHexODBF)</td>
<td>-5.61</td>
<td>-1.89</td>
<td>3.72</td>
</tr>
<tr>
<td>Poly(Br2DBF)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Perform in degassed THF under N₂ with 0.1 M nBu₄NPF₆ as the supporting electrolyte. HOMO energies are obtained with reference to ferrocene internal standard by relation: HOMO = − (E_{Fc}^{1/2} + 4.8) eV. LUMO energies are estimated from HOMO and bandgap (ΔE) by relation: ΔE = |HOMO| - |LUMO|. Bandgap is estimated from the absorption onset wavelength.