Porous organic–inorganic hybrid xerogels for stearic acid shape-stabilized phase change material

Radoelizo S. Andriamitantsoa, Wenjun Dong, Hongyi Gao, Ge Wang *
Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R China.
Corresponding Author: gewang@mater.ustb.edu.cn

Supplementary material

Tables of contents

Scanning Electron Microscopy (SEM) S1-S2
Differential scanning calorimetry (DSC) S3-S14
Fig S1. SEM images of (a) Pure stearic acid, (b) 50%-SA@MIL-100 (Cr), (c) 60%-SA@MIL-100 (Cr), (d) 70%-SA@MIL-100 (Cr).

Fig S2. SEM images of (a) 50%-SA@MOG-100 (Cr), (b) 60%-SA@MOG-100 (Cr), (c) 70%-SA@MOG-100 (Cr), (d) 90%-SA@MOG-100 (Cr).
Fig S3. DSC curves of pure SA.

Fig S4. DSC curves of 50% SA@MOG-100 (Cr) composite PCMs.
Fig S5. DSC curves of 60% SA@MOG-100 (Cr) composite PCMs.

Fig S6. DSC curves of 70% SA@MOG-100 (Cr) composite PCMs.
Fig S7. DSC curves of 80% SA@MOG-100 (Cr) composite PCMs.

Fig S8. DSC curves of 80% SA@MOG-100 (Cr) composite PCMs.
Fig S9. DSC curves of 85% SA@MOG-100 (Cr) composite PCMs.

Fig S10. DSC curves of 87% SA@MOG-100 (Cr) composite PCMs.
Fig S11. DSC curves of 90% SA@MOG-100 (Cr) composite PCMs.

Fig S12. DSC curves of 90%-SA@MOG-100 (Cr) composites under 5 thermal cycles.
Fig S13. DSC curves of 90%-SA@MOG-100 (Cr) composites under 10 thermal cycles.

Fig S14. DSC curves of 90%-SA@MOG-100 (Cr) composites under 15 thermal cycles.