New Journal of Chemistry

Action-FRET of β-Cyclodextrin inclusion complexes

Quentin Dueza, Geoffrey Knightb, Steven Dalyb, Julien De Wintera, Emilie Halina, Luke MacAleeseb, Rodolphe Antoine,b Pascal Gerbauxa,* and Philippe Dugourdb,*

Electronic Supplementary Information

a Organic Synthesis and Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium

b Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.

* Corresponding author email: philippe.dugourd@univ-lyon1.fr
pascal.gerbaux@umons.ac.be
Figure SI 1, Photospecific fragmentation pathways of the acceptor chromophore QSY7. Here R denotes the position of the linker chain and tagging location of the cyclodextrin.
Figure SI 2, LID mass spectrum of mass selected $[\text{A}\beta\text{C-Rh575+H}]^{2+}$ ions irradiated with a single laser pulse of pulse energy 2 mJ at a wavelength of 505 nm.
Figure SI 3, LID mass spectrum of mass selected \([A\beta C-Rh575+2H]^3+\) ions irradiated with a single laser pulse of pulse energy 5 mJ at a wavelength of 505 nm.
New Figure:

Figure SI 4, Branching ratio for the fragmentation $[(QSY-\beta CD)+(Rh575-CA\beta)+2H]^3\rightarrow [(Rh575-CA\beta)+2H]^2$. The branching ratio is defined as the ratio between the fragment intensity and the parent intensity in the LID spectrum.
Figure SI 5, Branching ratio for the fragmentation \([(QS\gamma-\beta CD)+(Rh575-CA\beta)+2H]^3+ \rightarrow [(QS\gamma-\beta CD)]^+\). The branching ratio is defined as the ratio between the fragment intensity and the parent intensity in the LID spectrum.