Supplementary materials

for

A novel and rapid approach for the synthesis of biocompatible and highly stable Fe₃O₄/SiO₂ and Fe₃O₄/C core/shell nanocubes and nanorods

Mohamed Abbas¹,²,³ *, Sri Ramulu Torati¹, Asif Iqbal¹, CheolGi Kim¹ *

¹Department of Emerging Materials Science, DGIST, Daegu, 711-873, South Korea
²Ceramics Department, National Research Centre, 12622 El-Bohouth Str, Cairo, Egypt
³State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China

Fig. S1

100 nm

40 nm

20 nm
Fig S1. TEM images of Fe₃O₄/SiO₂ nanocubes with 2 mL TEOS; (a) low magnification and (b, c) high magnification.

Fig S2. TEM images of Fe₃O₄/SiO₂ nanocubes with 4 mL TEOS; (a) low magnification and (b, c) high magnification.
Fig S3. XPS survey spectra of Fe$_3$O$_4$, Fe$_3$O$_4$/SiO$_2$ and Fe$_3$O$_4$/C core/shell nanocubes
Fig S4. FTIR analysis data for both (A) Fe$_3$O$_4$ nanocubes and (B) Fe$_3$O$_4$/C synthesized in the presence of ultrasound.

Fig S5. XRD patterns of (A) as-prepared Fe$_3$O$_4$ nanocubes and (B) Fe$_3$O$_4$/C synthesized in the presence of ultrasound.