Electronic Supplementary Information

Calcination temperature as a probe to tune the non-enzymatic glucose sensing activity of Cu-Ni bimetallic nanocomposites

Mohit Chawlaa, Jaspreet Kaur Randhawab*, Prem Felix Sirila*

aAdvanced Materials Research Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India, 175001
bSchool of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India, 175001

*prem@iitmandi.ac.in
*jaspreet@iitmandi.ac.in
Fig. S1: Particle size distribution of the synthesized nanostructures (a) monometallic Cu, (b) monometallic Ni and (c) bimetallic Cu-Ni nanocomposite.
Fig. S2: EDS spectrum of the synthesized bimetallic Cu-Ni nanocomposites
Fig. S3: STEM HAADF images and (a) line scan, (b) elemental maps of bimetallic CuNi nanocomposites (Elemental maps scale bar = 2µm).
Fig. S4: XPS spectra of the synthesized nanostructures (a) monometallic Cu (Cu2p scan), (b) monometallic Ni (Ni2p scan), (c) bimetallic Cu-Ni (Cu2p scan) and (d) bimetallic Cu-Ni (Ni2p scan)
Fig. S5: X-ray diffraction patterns of copper oxide nanostructures calcined at different temperatures.
Fig. S6: X-ray diffraction patterns of nickel oxide nanostructures calcined at different temperatures
Fig. S7: X-ray diffraction patterns of bimetallic copper oxide/nickel oxide nanocomposites calcined at different temperatures (CuO planes: indexed in black and NiO planes: indexed in red)
Fig. S8: Particle size distribution of copper oxide nanostructures calcined at different temperatures (a) 400°C, (b) 500°C and (c) 600°C.
Fig. S9: Particle size distribution of nickel oxide nanostructures calcined at different temperatures (a) 400°C, (b) 500°C and (c) 600°C.
Fig. S10: Particle size distribution of bimetallic copper oxide/nickel oxide nanocomposites calcined at different temperatures (a) 400°C, (b) 500°C and (c) 600°C.
Fig. S11: STEM HAADF image (left) and elemental maps (right) of bimetallic CuO/NiO nanocomposites calcined at 600°C (Elemental maps scale bar = 200nm).
Fig. S12: EDS spectra of bimetallic CuO/NiO nanocomposites calcined at (a) 400°C and (b) 500°C
Fig. S13: XPS spectra of the synthesized nanostructures calcined at different temperatures (a) CuO (Cu2p scan), (b) NiO (Ni2p scan), (c) bimetallic CuO/NiO (Cu2p scan) and (d) bimetallic CuO/NiO (Ni2p scan)