Supporting Information

A novel histidine functionalized 1,8-naphthalimide-based fluorescent chemosensor for selective and sensitive detection of Hg^{2+} in water

You-Ming Zhang*, Kai-Peng Zhong, Jun-Xia Su, Xiao-Peng Chen, Hong Yao, Tai-Bao Wei and Qi Lin*

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
Table of Contents

1. Fig. S1. 1HNMR spectrum of Z_1 in DMSO-d$_6$.

2. Fig. S2. 13C NMR spectrum of Z_1 in DMSO-d$_6$.

3. Fig. S3. ESI-MS spectrum of Z_1.

4. Fig. S4. (a) Fluorescence emission data for a 1:10 mixture of Z (2.0×10$^{-5}$ M) and different metal ions, as their perchlorate salts, in water (λ_{ex}=343 nm). (b) Visual fluorescence emissions of sensor Z after the addition of various metal ions (10 equiv.) in water on excitation at 384 nm using UV lamp.

5. Fig. S5. A plot of fluorescence intensity of the sensor Z (2.0×10$^{-5}$ M, water solution) depending on the concentration of Hg$^{2+}$ in the range from 0 to 8 equivalents.

6. Figure. S6. Non-linear least square fitting of intensity vs concentration of Hg$^{2+}$ using 1:1 complex model.

7. Fig. S7. Determination of detection limit of Hg$^{2+}$.

8. Figure S8 Influence of pH on the fluorescence of Z and Z+Hg$^{2+}$ in HEPES buffered solution in water.

9. Fig. S9 Partial 1H NMR spectra of Z (0.05 M, D$_2$O), and Z in the presence of varying amounts of Hg$^{2+}$.

10. Fig. S10. ESI-MS spectrum of Z+Hg$^{2+}$ complex.
Fig. S1 1HNMR spectrum of Z_1 in DMSO-d$_6$.
Fig. S2 13C NMR spectrum of Z_1 in DMSO-d$_6$.
Figure S3 ESI-MS spectrum of Z₁₅.
Figure S4 (a) Fluorescence emission data for a 1:10 mixture of Z (2.0×10⁻⁵ M) and different metal ions, as their perchlorate salts, in water (λex=343 nm). (b) Visual fluorescence emissions of sensor Z after the addition of various metal ions (10 equiv.) in water on excitation at 384 nm using UV lamp.
Fig. S5 A plot of fluorescence intensity of the sensor Z (2.0×10^{-5} M, water solution) depending on the concentration of Hg^{2+} in the range from 0 to 8 equivalents.
Figure S6 Non-linear least square fitting of intensity vs concentration of Hg$^{2+}$ using 1:1 complex model.
Figure S7 Plot of the intensity at 384 nm for a mixture of Z and Hg$^{2+}$ in water in the range 1.0×10^{-7}–2.0×10^{-6} M ($\lambda_{ex} = 343$ nm). Linear Equation: $Y = -102.950X + 536.227$, $R^2 = 0.9903$

\[\delta = \sqrt{\frac{\sum(F_0 - F_1)^2}{N - 1}} = 6.069, \; K = 3 \]

\[S = 1.03 \times 10^6 \]

\[LOD = K \times \delta / S \]

\[LOD = 1.785 \times 10^{-7} \text{ M} \]

F_0 is the fluorescence intensity of Z; F_1 is the average of the F_0.
Figure S8 Influence of pH on the fluorescence of Z and Z+Hg$^{2+}$ in HEPES buffered solution in water.
Fig. S9 Partial 1H NMR spectra of Z (0.05 M, D$_2$O), and Z in the presence of varying amounts of Hg$^{2+}$.
Measurement of fluorescence quantum yields

Fluorescence quantum yields were determined by the following equation.

\[\Phi = \Phi_R \times \frac{I}{I_R} \frac{A_R}{A} \]

Where \(\Phi \) is fluorescence quantum yield, \(I \) is the integrated fluorescence intensity and \(A \) is the optical density (absorption). The subscript \(R \) refers to the reference of Quinine hemesulfate salt.”
Figure S10 ESI-MS spectrum of Z+Hg2+ complex.