Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Highly efficient green synthesis of α-hydroxyphosphonates using recyclable choline hydroxide catalyst

Reddi Mohan Naidu Kalla, Yu Zhang and Il Kim*

BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.

Page

1. FT-IR, ¹H, ¹³C NMR and ESIHRMS spectra for Cholinehydroxide II–III

2. ¹H, ¹³C, and ³¹P NMR spectra for α-hydroxy phosphonates IV–XXXVI

Fig. S1. FT-IR (A), ¹H NMR (B), and ¹³C NMR (C) spectra of ChOH.

Spectrum from blk-70-MeOH.wiff (sample 1) - blk-70-MeOH, +TOF MS (50 - 500) from 0.102 to 0.903 min

Fig. S2. Mass spectrum of ChOH.

2. ¹H, ¹³C, and ³¹P NMR spectra for the HPPs

IX

Fig. S8. ¹H NMR (A), ¹³C NMR (B), and ³¹P NMR (C) spectra of compound 6.

XIV

 a
 a

 y % y %
 y %

 y % y %
 y %

 y % y %
 y %

 y % y %
 y %

 y % y %
 y %

 y % y %
 y %

 y % y %
 y %

 y % y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %

 y %
 y %
</tr

0

Fig. S16. ¹H NMR (A), ¹³C NMR (B), and ³¹P NMR (C) spectra of compound 14.

XXVIII

Fig. S19. ¹H NMR (A), ¹³C NMR (B), and ³¹P NMR (C) spectra of compound 17.

Fig. S20. ¹H NMR (A), ¹³C NMR (B), and ³¹P NMR (C) spectra of compound 18.

XXXV

