Electronic Supplementary Information (ESI)

Following the nano-structural molecular orientation guidelines for sulfur versus thiophene units in small molecule photovoltaic cells

Yu Jin Kim and Chan Eon Park*

POSTECH Organic Electronics Laboratory, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
We investigated the UV-vis absorption spectra of active films (pure small molecule (a) and small molecule:PC$_{71}$BM films (b)). In the pure small molecule films, the DR3TSBDT absorption spectrum more red-shifted relative to that in DR3TBDTT film. Furthermore, the absorption maximum peak (λ_{max}) at ca. 630 nm appears with shaper and more intense in pure DR3TSBDT film. These results indicate that the presence of more ordered aggregation and stronger π–π stacking appears in DR3TSBDT filmsS, which are agree with AFM and 2D-GIWAXS analyses. Moreover, in the small molecule:PC$_{71}$BM films, the absorption spectrum of DR3TSBDT blends also slightly red-shifted with higher shoulder peak at ca. 635 nm than that of DR3TBDTT:PC$_{71}$BM film. However, in short absorption range (300 – 500 nm), which is due to PCBM domainsS, absorption band are revealed with stronger and higher intensity in the DR3TBDTT:PC$_{71}$BM films. All Two findings are quite consistent with line-cut profiles of 2D-GIWAXS (Fig. 4g-h).