Electronic Supplementary Information for:

Peroxidase-like Activity of Co$_3$O$_4$ Nanoparticles Used for Biodetection and Evaluation of Antioxidant Behavior

*Huimin Jia,*a *Dongfang Yang,*a *Xiangna Han,*a *Junhui Cai,*a *Haiying Liu,*b *Weiwei He**a

a Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000, P. R. China

b College of Food Science and Biological Engineering, Xuchang University, Henan 461000, P. R. China

To whom Correspondence should be addressed. E-mail: heweiweixcu@gmail.com
Figure S1. UV-vis absorption spectra of samples containing 20 μl 0.1 M OPD, 20 μl 0.1 M H2O2 and Co3O4 NPs with different dosage: 2, 5, 10, 20 and 40μl. Inset shows the dependence of OPD oxidation rate on the concentration of Co3O4 nanoparticles.
Figure S2. Effect of OPD (a) and TMB (b) concentration on their reaction rate catalyzed by Co$_3$O$_4$ nanoparticles. Absorbance variation of OPD (a) and TMB (c) oxidation over time at different substrate concentration.

Figure S3. Effect of hydrogen peroxide concentration on the reaction rate of TMB oxidation catalyzed by Co3O4 nanoparticles. (A) shows the absorbance evolution over reaction time at different H2O2 concentration for TMB oxidation.
Figure S4. UV-Vis spectra evolution of catalytic oxidation of TMB by Co$_3$O$_4$ NPs over time in the absence and presence of 6, 10 and 20 μM GA.
Figure S5. Chemical structures of gallic acid, tannic acid and ascorbic acid.
Figure S6. The evolutions of UV-Vis spectra over time for AA, TA and GA catalyzed by Co$_3$O$_4$ NPs in the absence and presence of hydrogen peroxide. Insets show the control experiment without Co$_3$O$_4$ NPs. Conditions: 0.17 mM AA, 0.17 mM TA, 0.15 mM GA, 20 µl Co$_3$O$_4$ NPs, 0.67 mM H$_2$O$_2$, 2 min/scan.