Electronic Supplementary Information

Nanowire-templated formation of SnO$_2$/carbon nanotubes with enhanced lithium storage properties

Xiaosi Zhou, ab Le Yu, a and Xiong Wen (David) Loua

a School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore

E-mail: xwlou@ntu.edu.sg; or davidlou88@gmail.com

Webpage: http://www.ntu.edu.sg/home/xwlou/

b Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
Fig. S1 (a) FESEM image and (b) XRD pattern of MnO$_x$ nanowires.

Fig. S2 (a) FESEM image and (b) XRD pattern of MnO$_x$/SnO$_2$ nanocables.
Fig. S3 FESEM image of MnO$_x$/SnO$_2$/PDA nanocables.

Fig. S4 (a) FESEM image and (b) corresponding EDX spectrum of the MnO$_x$/SnO$_2$/C nanocables.
Fig. S5 (a) FESEM image and (b) corresponding EDX spectrum of the SnO$_2$/C-NTs nanocomposite.

Fig. S6 XRD pattern of the SnO$_2$/C-NTs nanocomposite.
Fig. S7 TGA curve of the SnO$_2$/C-NTs nanocomposite.

Fig. S8 (a) N$_2$ adsorption–desorption isotherms of the SnO$_2$/C-NTs nanocomposite and (b) the pore-size distribution calculated from the adsorption branch.
Fig. S9 (a) FESEM and (b) TEM images of SnO$_2$-NTs obtained after calcining SnO$_2$/C-NTs in air at 550 °C.

Fig. S10 XRD pattern of SnO$_2$-NTs.
Fig. S11 (a) Charge–discharge voltage profiles, (b) cycling performance, and (c) rate capability of the MnO$_x$/SnO$_2$/C nanocables in the voltage range of 0.01–2 V vs. Li/Li$^+$ at a current density of 500 mA g$^{-1}$.
Fig. S12 FESEM image of the SnO$_2$/C-NTs electrode before cycling. It should be noted that the small nanoparticles in the electrode are carbon black (Super-P-Li).

Fig. S13 (a) FESEM image and (b) TEM image of the SnO$_2$/C-NTs electrode after 100 charge–discharge cycles at a current density of 500 mA g$^{-1}$ between 0.01 and 2 V. It is worth mentioning that the nanoparticles in the electrode are carbon black (Super-P-Li).
Fig. S14 Nyquist plots of the SnO$_2$-NTs and SnO$_2$/C-NTs electrodes.
Table S1. Electrochemical performance of various SnO$_2$-based anode materials for lithium-ion batteries.

<table>
<thead>
<tr>
<th>SnO$_2$-based anode materials</th>
<th>Voltage range (V)</th>
<th>Current density (mA g$^{-1}$)</th>
<th>Discharge capacity (mA h g$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO$_2$-tube-in-CNT nanostructures</td>
<td>0.05–3</td>
<td>~300</td>
<td>542 (after 200 cycles)</td>
<td>1</td>
</tr>
<tr>
<td>Mesoporous SnO$_2$ overlaying MWCNTs hybrid composites</td>
<td>0.25–2</td>
<td>33.3</td>
<td>344.5 (after 50 cycles)</td>
<td>2</td>
</tr>
<tr>
<td>Tin nanoparticles encapsulated in elastic hollow carbon spheres</td>
<td>0.05–3</td>
<td>500</td>
<td>550 (after 100 cycles)</td>
<td>3</td>
</tr>
<tr>
<td>Coaxial SnO$_2$@carbon hollow nanospheres</td>
<td>0.05–2</td>
<td>500</td>
<td>460 (after 100 cycles)</td>
<td>4</td>
</tr>
<tr>
<td>SnO$_2$ nanotubes</td>
<td>0.05–1.5</td>
<td>100</td>
<td>468 (after 30 cycles)</td>
<td>5</td>
</tr>
<tr>
<td>SnO$_2$ nanosheets</td>
<td>0.05–3</td>
<td>78.2</td>
<td>559 (after 20 cycles)</td>
<td>6</td>
</tr>
<tr>
<td>SnO$_2$ hierarchical structures</td>
<td>0.01–1.2</td>
<td>400</td>
<td>516 (after 50 cycles)</td>
<td>7</td>
</tr>
<tr>
<td>Graphene-supported SnO$_2$ nanosheets</td>
<td>0.01–1.2</td>
<td>400</td>
<td>518 (after 50 cycles)</td>
<td>8</td>
</tr>
<tr>
<td>SnO$_2$ nanoboxes</td>
<td>0.01–2</td>
<td>~150</td>
<td>570 (after 40 cycles)</td>
<td>9</td>
</tr>
<tr>
<td>CNTs@SnO$_2$@carbon coaxial nanocables</td>
<td>0.01–2</td>
<td>400</td>
<td>505 (after 60 cycles)</td>
<td>10</td>
</tr>
<tr>
<td>SnO$_2$@carbon hierarchical tubular structures</td>
<td>0.05–1.5</td>
<td>200</td>
<td>700 (after 50 cycles)</td>
<td>11</td>
</tr>
<tr>
<td>Porous SnO$_2$ microboxes</td>
<td>0.05–1.5</td>
<td>200</td>
<td>550 (after 150 cycles)</td>
<td>12</td>
</tr>
<tr>
<td>SnO$_2$/C-NTs</td>
<td>0.01–2</td>
<td>500</td>
<td>596 (after 200 cycles)</td>
<td>This work</td>
</tr>
</tbody>
</table>
Supplementary References