Supplementary Information

Plasmon Resonance Energy Transfer and Plexcitonic Solar Cell

Fan Nan,‡a Si-Jing Ding,‡a Liang Ma,‡a Zi-Qiang Cheng,‡a Yu-Ting Zhong,‡a Ya-Fang Zhang,‡a Yun-Hang Qiu,‡a Xiaoguang Li,*b Li Zhou,*a and Qu-Quan Wang*a,c

‡Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China

*bInstitute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China

*cThe Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
Figure S1. Extinction spectra of the reference sample of Au@RB hybrid, which does not exhibit Fano resonance. The extinction intensity of RB is set to be comparable with that of Chl.

Figure S2. $I-V$ curves of the reference samples of Au@RB-SSCs.
Figure S3. Schematic of the Pump-Probe experimental setup. M = mirror, L = lens, D = detector, S = sample.

Figure S4. The normalized Fano shape of Au@Chl hybrids with varied SPR (a) and varied μ_dye (b). The normalized Fano shape (σ_{dye@Au}(ν)/σ_{Au}(ν)) of each Au@Chl absorption spectrum is fitted by the function (red lines) $f(ν) = \left\{ (1 - a_F) + a_F \frac{[h(ν - ν_o) + qγ]^2}{[h(ν - ν_o)]^2 + γ^2} \right\}$, from which we extract the q and a_F parameters.