Electronic Supplementary Information (ESI)

Facilely prepared Fe_3O_4/nitrogen-doped graphene quantum dot hybrid as a robust nonenzymatic catalyst for visual discrimination of phenylenediamine isomers†

Bingfang Shi,ab Yubin Su,a Liangliang Zhang,$^{a, *}$ Mengjiao Huang,a Xuefeng Lia and Shulin Zhaoa

aState Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin, 541004, China.

bGuangxi Colleges and Universities Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environmental Engineering, Baise University, Guangxi Baise 533000, China

†Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016
1. Supplementary Figures

Fig. S1 UV-vis spectra of the as-synthesized N-GQDs and Fe$_3$O$_4$/N-GQDs (a) and XPS spectra of N-GQDs (b). The concentrations of N-GQDs and Fe$_3$O$_4$/N-GQDs were 0.054 mg/mL and 0.018 mg/mL, respectively. Inset of figure S1a: the photograph of N-GQDs (left) and Fe$_3$O$_4$/N-GQDs (right). The concentrations of N-GQDs and Fe$_3$O$_4$/N-GQDs were 5.4 mg/mL and 5.3 mg/mL, respectively.

Fig. S2 XRD patterns of N-GQDs (a) and Fe$_3$O$_4$/N-GQDs (b).
Fig. S3 XPS analysis of Fe$_3$O$_4$/N-GQDs and Fe2p prepared at different conditions. The concentrations of N-GQDs and NaOH were 12.2 mg/mL and 1 M, respectively. The concentrations of Fe$^{3+}$ were 0.15 M (a,b), 0.5 M (c,d) and 0.6 M (e,f).
Fig. S4 Energy-dispersive spectrum (EDS) of the Fe$_3$O$_4$/N-GQDs. Note that the strong signal at 8.1 and 8.9 eV assigned to Cu originates from the copper TEM grid.

Fig. S5. Room-temperature magnetization curves of the Fe$_3$O$_4$/N-GQDs.
Fig. S6 C1s XPS spectra of N-GQDs (a) and Fe$_3$O$_4$/N-GQDs (b); N1s XPS spectra of N-GQDs (c) and Fe$_3$O$_4$/N-GQDs (d).
Fig. S7 UV-vis spectra of the Fe$_3$O$_4$/N-GQDs-catalyzed oxidation of ABTS (a) and TMB (b) in 70 μL of 250 mM HAc-NaAc buffer (pH 6.5) at room temperature. The concentrations of Fe$_3$O$_4$/N-GQDs, H$_2$O$_2$, ABTS were 0.454 mg/mL, 100 mM, and 2 mM respectively. (Inset: the colors of final solutions in the absence (left) and presence (right) of Fe$_3$O$_4$/N-GQDs, respectively)
Fig. S8 Relative catalytic activity of Fe$_3$O$_4$/N-GQDs after the treatment by different pH (a) and temperature (b) for 2 h. Experiments were carried out as following: fist, Fe$_3$O$_4$/N-GQDs were incubation at different pH (2.0-12.0) and temperature (10-90 °C) for 2 h, respectively. The obtained mixtures were centrifuged at 12 000 rpm for 10 min. The treated Fe$_3$O$_4$/N-GQDs were dissolved in 40 μL ultrapure water (The final concentration of treated Fe$_3$O$_4$/N-GQDs is 0.454 mg/mL). 10 μL diluted Fe$_3$O$_4$/N-GQDs, 70 μL HAc-NaAc buffer (250 mM, pH 6.5) and 10 μL of 5 mM H$_2$O$_2$ were mixed together. After that, the above mixture were incubated at room temperature for 5 min in the present of 10 μL TMB (10 mM). The absorbance was read at 652 nm.
The peroxidase-like activity of Fe$_3$O$_4$/N-GQDs treated with 2% NaBH$_4$, 2% NaIO$_4$ or H$_2$O under standard conditions at 420 nm using ABTS and H$_2$O$_2$ as substrates.
Fig. S10 Steady-state kinetic assay and catalytic mechanism of Fe$_3$O$_4$/N-GQDs. Experiments were conducted by 10 μL diluted Fe$_3$O$_4$/N-GQDs (0.454 mg/mL), 70 μL HAc-NaAc buffer (250 mM, pH 6.5) at room temperature. (a) The concentration of TMB was 32 μM and H$_2$O$_2$ concentration was varied. (b) The concentration of H$_2$O$_2$ was 0.1 mM and TMB concentration was varied. (c,d) Double reciprocal plots of activity of Fe$_3$O$_4$/N-GQDs with the concentration of one substrate (H$_2$O$_2$ or TMB) fixed and the other varied.
Fig. S11 Images of oxidation color reaction of OPD (left), MPD (middle), and PPD (right) by H$_2$O$_2$ based on the catalysis of Fe$_3$O$_4$/N-GQDs at room temperature for 20 min. Control experiments were carried out at room temperature for 20 min as follows: (a) 70 μL HAc-NaAc buffer (250 mM, pH 6.5) + 10 μL H$_2$O$_2$ (5 mM) + 10 μL Fe$_3$O$_4$/N-GQDs (0.454 mg/mL) + 10 μL analyte (1 mM); (b) 70 μL HAc-NaAc buffer (250 mM, pH 6.5) + 10 μL Fe$_3$O$_4$/N-GQDs (0.454 mg/mL) + 10 μL analyte (1 mM) + 10 μL H$_2$O; (c) 70 μL HAc-NaAc buffer (250 mM, pH 6.5) + 10 μL H$_2$O$_2$ (5 mM) + 10 μL analyte (1 mM) + 10 μL H$_2$O; (d) 70 μL HAc-NaAc buffer (250 mM, pH 6.5) + 10 μL analyte (1 mM) + 20 μL H$_2$O.
Fig. S12 UV–vis absorption spectra of the reaction mixture under different conditions. Experiments were carried out at room temperature for 20 min, and the concentrations of Fe$_3$O$_4$/N-GQDs, N-GQDs, H$_2$O$_2$, OPD, MPD, and PPD were 0.454 mg/mL, 12.2 mg/mL, 5 mM, 100 μM, 100 μM, and 100 μM, respectively.
Fig. S13 Comparison of the catalytic ability of Fe$_3$O$_4$ and Fe$_3$O$_4$/N-GQDs. The concentrations of Fe$_3$O$_4$, Fe$_3$O$_4$/N-GQDs, H$_2$O$_2$, OPD, MPD, and PPD were 0.454 mg/mL, 0.454 mg/mL, 5 mM, 100 μM, 100 μM, and 100 μM, respectively.
Fig. S14 UV−vis absorption spectra of the reaction mixture in the presence of Fe$_3$O$_4$/N-GQDs and leached Fe$^{3+}$ from Fe$_3$O$_4$/N-GQDs. Fe$_3$O$_4$/N-GQDs were incubated in HAc-NaAc buffer (pH 6.5) for 2 h and then removed from solution. The obtained solution was used to evaluate the catalytic ability of Fe$^{3+}$ leaching from Fe$_3$O$_4$/N-GQDs. The concentrations of H$_2$O$_2$, OPD, MPD, and PPD were 5 mM, 100 μM, 100 μM and 100 μM, respectively.
Fig. S15 Effect of pH (a), temperature (b), concentration of H$_2$O$_2$ (c), doge of Fe$_3$O$_4$/N-GQDs (d), and reaction time (e) on the analysis of OPD and PPD in the presence of Fe$_3$O$_4$/N-GQDs.
Experiments were conducted using 10 μL Fe₃O₄/N-GQDs in 70 μL HAc-NaAc buffer (250 mM, pH 6.5) with 10 μL of 5 mM H₂O₂. Then, 10 μL of 70 μM analyte solution are added to the obtained mixture, and incubated at room temperature for 20 min (ΔA = Aₘₐₓ - A₀, where A₀ is the absorbance of the sensing system in the absence of OPD and PPD, and Aₘₐₓ is the max absorbance in the presence of OPD and PPD).

Fig. S16 UV−vis absorption spectra of the Fe₃O₄/N-GQDs-H₂O₂ system in the presence of toluene-2,4-diamine (TDM). Experiments were carried out at room temperature for 20 min, and the concentrations of Fe₃O₄/N-GQDs, H₂O₂, and TDM were 0.454 mg/mL, 5 mM, and 200 μM, respectively.
2. Supplementary Tables

Table S1 Comparison of analytical methods for OPD and PPD detection

<table>
<thead>
<tr>
<th>Methods</th>
<th>Detection range (μM)</th>
<th>Sensitivity (μM)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-performance liquid chromatography</td>
<td>–</td>
<td>1.8–27.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>0.92</td>
<td>1</td>
</tr>
<tr>
<td>High-performance liquid chromatography</td>
<td>4.6–185.2</td>
<td>2.59</td>
<td>2</td>
</tr>
<tr>
<td>Capillary zone electrophoresis coupled with amperometric detection carbon nanotubes/chitosan modified electrode</td>
<td>0.5–100</td>
<td>2–100</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>7.3</td>
</tr>
<tr>
<td>Micellar electrokinetic chromatography</td>
<td>4.6–555.6</td>
<td>2.96</td>
<td></td>
</tr>
<tr>
<td>Colorimetric probe based on silver nanoparticles</td>
<td>1–80</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Cyclic voltammograms based on glassy carbon electrode</td>
<td>–</td>
<td>2–200</td>
<td>1.2</td>
</tr>
<tr>
<td>MnO₂ nanowires modified glassy carbon electrodes</td>
<td>–</td>
<td>0.2–150</td>
<td>0.05</td>
</tr>
<tr>
<td>Photoelectrochemical determination based on CdS quantum dots and graphene hybrid film</td>
<td>–</td>
<td>0.1–3</td>
<td>0.043</td>
</tr>
<tr>
<td>Colorimetric sensing based on Fe₃O₄/N-GQDs hybrid-H₂O₂ system</td>
<td>1–90</td>
<td>3–70</td>
<td>0.32</td>
</tr>
</tbody>
</table>

References

