Supporting Information

An Effective Way to Increase the High-frequency Permeability of Fe₃O₄ Nanorods

Xiao Ren¹, Haitao Yang¹¹, Jin Tang¹, Zi-An Li², Sai Geng¹, Jun Zhou¹, Yi kun Su³, Xiangqun Zhang¹, Zhaohua Cheng^{1*}

¹ Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China

²Faculty of Physics, University of Duisburg-Essen, Duisburg 47057, Germany

³College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China

¹ Corresponding author: Tel: 86-10-82648083; Fax: 86-10-82649485; E-mail: <u>zhcheng@iphy.ac.cn</u> and <u>htyang@iphy.ac.cn</u>

Fig. S1. (a).SEM image of the as-prepared $\alpha\text{-}Fe_2O_3$ NRs; (b). SAED image of the Fe_3O_4

NRs

Fig. S2 (a). XRD patterns of α -Fe₂O₃ and Fe₃O₄ NRs; (b). XPS spectra of Fe₃O₄ NRs. (c). Background-subtracted XRD pattern of Fe₃O₄ NRs and Pawley fit. (d). Magnetization hysteresis loops for Fe₃O₄ NRs at 300 and 10K;

Fig. S3. Tight oriented Fe₃O₄ NRs of micromagnetic calculations results ($M_s = 0.6T$) The (1), (2), and (3) diagram represent the magnetic moment equilibrium, distribution of demagnetizing field, and complex permeability of Fe₃O₄ NRs, respectively.