Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors

Longfei Lv, a,b Yibing Xu, b Hehai Fang, c Wenjin Luo, c Fangjie Xu, b Limin Liu, b Biwei Wang, b Xianfeng Zhang, a Dong Yang, a* Weida Hu a* and Angang Dong a,b*

a State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

b Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Department of Chemistry, Fudan University, Shanghai 200433, China.

c National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.

*To whom correspondence should be addressed: agdong@fudan.edu.cn (A.D.);
wdhu@mail.sitp.ac.cn (W.H.); yangdong@fudan.edu.cn (Y.D.)
Figure S1. (a, b) TEM images of the CsPbBr$_3$ products formed after 5 s and 5 min of reaction, respectively.
Figure S2. (a) AFM image of CsPbBr$_3$ nanosheets synthesized at 120 °C. The sheet thickness was determined to be ~3 nm. (b) AFM image of CsPbBr$_3$ nanosheets synthesized at 150 °C. The sheet thickness was determined to be ~2 nm.
Figure S3. TEM image of CsPbBr$_3$ nanoplatelets synthesized at 170 °C.
Figure S4. TEM image of CsPbI$_3$ nanosheets and nanocube by-products without reducing the OA/OAm amounts.
Figure S5. (a) XRD patterns of CsPbI₃ nanosheets and the standard cubic phase CsPbI₃. The diffraction peaks ascribed to the orthorhombic phase CsPbI₃ were indicated by asterisks. The inset shows the sample after XRD data collection, in which the light yellowish color suggested the partial conversion of CsPbI₃ nanosheets despite the short period of exposure (~ 30 min). (b) XRD patterns of CsPbI₃ nanosheets after prolonged exposure and the standard orthorhombic phase CsPbI₃. The inset shows the sample after exposure to air for 2 h, showing the complete transition of CsPbI₃ from cubic to orthorhombic phase (yellow phase).
Figure S6. (a) XRD pattern of CsPbClBr$_2$ nanosheets, suggesting that the mixed halide perovskite nanosheets is primarily occupied by tetragonal phase. (b) XRD pattern of CsPbBr$_2$I nanosheets suggesting the mixed halide perovskite nanosheets is primarily occupied by orthorhombic phase.
Figure S7. TEM images of CsPbBr$_3$ nanosheets, showing some nanosheets with missing corners.