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I. FILM THICKNESS OPTIMIZATION

Optimization of surface nanostructuring is represented
in Fig. S1. In all experiments, surface scanning by a fo-
cused laser beam with a repetition rate of 10 kHz and
a scan speed of 20 µm/s provides ≈ 450 absorbed laser
pulses per spot. The best quality of nanostructures was
observed for d = 100 nm (Fig. S1). As it is discussed
in the main text, this film thickness provides excitation
of a planar waveguide mode at a wavelength of 800 nm.
The interference maxima near the ”point like” source give
inhomogeneous electric field distribution. However, peri-
odic interference pattern can be observed only around
a thickness of 100 nm, whereas the other thicknesses
do not demonstrate such effective energy conversion to
the waveguide mode and the electromagnetic field en-
hancement up to 1.5 times. Numerical simulations are
performed by using time-domain solver in the commer-
cial software CST Microwave Studio. Refractive index of
amorphous silicon is taken from Palik [1].

II. ANALYTICAL MODEL FOR
LASER-INDUCED METASURFACE FORMATION

The most widely accepted theory of laser-induced pe-
riodical surface structures (LIPSS) is based on the inter-
ference of the incident laser beam with some form of a
surface-scattered electromagnetic wave. The work of Sipe
et al. [2] represents a first-principle theory which takes
into consideration the interaction of an electromagnetic
wave with a microscopically rough surface. This the-
ory predicts possible LIPSS wave vectors k of the surface
[with |k|=2π/Λ] as a function of the laser parameters an-
gle of incidence u, polarization direction, and wave vector
of the incident radiation kL (with |kL|=2π/λ) which has
a component ki in the surface plane (Fig. S2) and surface
parameters (dielectric constant and surface roughness).
It leads to an expression for the inhomogeneous energy
deposition into the irradiated material which is propor-
tional to η(k, ki)×|b|, where η is a response function
describing the efficacy with which the surface roughness
at k leads to inhomogeneous absorption of radiation. The
second factor b represents a measure of amplitude of the
surface roughness at k which is a slowly varying function

for a surface with a homogeneously distributed rough-
ness. In contrast to the behavior of b, the efficacy factor
η can exhibit sharp peaks at certain k values which then
determine the spatial ripple periods. It worth noting that
once the LIPSS are formed, the Fourier spectrum of the
surface b(k) can also exhibit sharp peaks coincident with
the peaks in η(k) which were initially responsible for the
surface damage.

We briefly summarize the mathematical definitions
needed to calculate the efficacy factor on the basis of the
mentioned first-principle theory. It will use the general
expressions given in that reference in order to get simpli-
fied equations for practical use in the present situation.
In the theory of Sipe et al., the efficacy factor is defined
as

η(k,ki) = 2π|υ(k+) + υ∗(k−)|. (S1)

For the two cases of s- or p-polarized light, incident
under an angle of θ and having polarization vectors and
a wave vector component ki, the complex function υ is
given by

υ(k±, s− pol.) = [hss(k±)(k̂± ·ŷ)2 +

hkk(k±)(k̂± ·x̂)2]γt|ts(ki)|2, (S2)

or

υ(k±, p− pol.) = [hss(k±)(k̂± · x̂)2 + hkk(k±)

×(k̂± · ŷ)2]γt|ts(ki)|2 + hkz(k±)

×(k̂± · ŷ)γzεt
∗
x(ki)tz(ki) + hzk(k±)

×(k̂± · ŷ)γttx(ki)t
∗
z(ki)

+hzz(k±)γzε|tz(ki|2, (S3)

with the inner products

(k̂± · ŷ) = (sinθ ± κy)/κ± (S4)

and

(k̂± · ŷ) = κx/κ±. (S5)
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FIG. S1. SEM images of nanostructured films by femtosecond laser irradiation with different thicknesses d.

Here, the definition κ± = [κ2x + (sinθ ± κy)2]1/2 has
been used and all lengths have been normalized with the
factor λ/(2π). Hence, the dimensionless LIPSS wave vec-
tors κ = k · λ(2π) ≡ λ/Λ are used in the following. With
these definitions and with ε being the complex dielectric
function of the material at the irradiation wavelength,
the functions hss, hkk, hkz, hzk, and hzz used in Eqs. (2)
and (3) can be expressed as

hss(k±) =
2i√

1− κ2± +
√
ε− κ2±

, (S6)

hkk(k±) =
2i
√

(ε− κ2±)(1− κ2±)

ε
√

1− κ2± +
√
ε− κ2±

, (S7)

hkz(k±) =
2iκ±

√
ε− κ2±

ε
√

1− κ2± +
√
ε− κ2±

, (S8)

hzk(k±) =
2iκ±

√
1− κ2±

ε
√

1− κ2± +
√
ε− κ2±

, (S9)

and

hzz(k±) =
2iκ2±

ε
√

1− κ2± +
√
ε− κ2±

. (S10)

The complex functions ts, tx, and tz are given by

ts(ki) =
2|cosθ|

|cosθ|+
√
ε− (sinθ)2

(S11)

tx(ki) =
2
√
ε− (sinθ)2

ε|cosθ|+
√
ε− (sinθ)2

(S12)

and

tz(ki) =
2sinθ

ε|cosθ|+
√
ε− (sinθ)2

(S13)

The surface roughness is included in the theory in the
factors γt and γz via two numerical factors, s (shape
factor) and f (filling factor), by

γt =
ε− 1

4π(1 + 0.5(1− f)(ε− 1)(F (s)−R ·G(s))
(S14)

and

γz =
ε− 1

4π(ε− (1− f)(ε− 1)(F (s) +R ·G(s))
(S15)

with R=(ε-1)/(ε+1) and the scalar functions

F (s) =
√
s2 + 1− s, (S16)

and
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FIG. S2. Experimental (a) and theoretical (b) spatial 2D
Fourier spectra of the fabricated metasurface.

Q(s) = 0.5(
√
s2 + 4 + s)−

√
s2 + 1. (S17)

Following Ref. [2], the surface roughness was modeled
with the values s=0.4 and f =0.1, which represent the
assumption of spherically shaped islands.

On the basis of Eqs. (S1)–(S17) it is possible to cal-
culate numerically the efficacy factor h as a function of
the normalized LIPSS wave vector components κx, κy
at given values for the irradiation parameters (θ, λ, and
polarization direction) and for parameters characterizing
the optical (ε) and the surface roughness properties (s
and f ).

In the case of bulk material with known complex re-
fractive index (n+i·K) and slightly rough surface, the re-
sulting intensity distribution in a sub-surface layer can be

characterized by a so-called “efficacy factor” ξ(
−→
k ;
−→
k i),

where
−→
k and

−→
k i are the wave vectors of the resulting

intensity distribution and incident light, respectively [2].

The calculated 2D Fourier spectrum of laser energy
deposition (for n=3.90 and K=0.11 at λ=800 nm [1], see
Section 1 of Supplementary Materials for details) exhibits
pronounced maxima for structures with period around
λ/n ≈ 205 nm and with wavevectors perpendicular to
the laser polarisation (Fig. S2b).

It is worth noting, that the surface plasmon-polaritons
excitation [3–5] is unlikely to be the origin of the meta-
surface formation in our case, because the wavevector of
the periodical arrays is perpendicular to polarization of
the incident light (Fig. S2a), whereas plasmon-polaritons
are mostly longitudinal waves [6]. Moreover, quality of
nanostructuring is the best for 100-nm film as compared
to the other a-Si:H films, revealing an important role of
the waveguiding mode.

III. SPECTRAL AND SPATIAL
CHARACTERIZATION OF LASER BEAMS

Spectrum of incident femtosecond laser pulses with a
central wavelength of 800 nm is shown in Fig. S3a and
has a width at half-maximum around 28 nm. We do not
observed THG from our silica substrates, which have rel-
atively low efficiency for direct THG [7] and much higher
efficiencies in four-wave mixing schemes [8]. In the case
of efficient generation of TH from the self-adjusted meta-
surface, we observed some changes in spatial distribution
of the generated pulses. As shown in Fig. S3, the spa-
tial distribution of the TH beam undergoes broadening
and slight distortion. The measurements of the intensity
distributions were carried out by means of laser beam
profiler (Newport).
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FIG. S3. (a) Spectrum of an incident femtosecond laser pulse
and its spatial distribution. (b) Spectra of emission signal
around third harmonic wavelength for a blank silica substrate
(black curve) and for a self-adjusted metasurface (blue curve)
and its spatial distribution.
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IV. THIRD HARMONICS GENERATION FROM
NONRESONANT NANOSTRUCTURE

In order to study of third harmonics generation from
nonresonant surface nanostructure, we provided dense
surface structuring in single-shot regimes, where each
pulse damages an area of about 0.5×0.3 µm (Fig. S4a).
Reflection spectrum of such structure does not contain
any features at λ = 800 nm (Fig. S4b). Measured UV sig-
nal at the maximum intensity 80 GW/cm2 reveals 2-fold
decrease as compared to UV signal from smooth silicon
film with the same thickness.
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FIG. S4. (a) SEM image of nonresonant surface nanos-
tructure. (b) Reflection spectrum of the nonresonant sur-
face nanostructure. (c) Experimental (circles) and theoreti-
cal (lines) dependencies of third harmonic generation (THG)
efficiency on Si film thickness at various pump intensities:
20 GW/cm2 (black), 35 GW/cm2 (red), 55 GW/cm2 (blue) of
1050-nm fs-laser. (d) Experimental dependencies of third har-
monic signal generated by 1050-nm pulses from initial (black
dots) and nanostructured Si films with 100-nm thickness on
fused silica substrate with resonant geometry for 800-nm.

Additionally, we observed the dependence of THG ef-
ficiency on orientation of polarization of pump laser.
When the laser pulses irradiate the self-adjusted meta-
surface, the TH signal generated by the beam with po-
larization parallel to rows of the metasurface is 2.1 times
higher than for the beam with perpendicular polariza-
tion.

Nonresonant regime was additionally tested as fol-
lowing. We fabricate self-adjusted metasurface under
800-nm laser irradiation, and then generate TH sig-
nal by using 1050-nm laser pulses and compare it with
TH signal from smooth a-Si:H film at the same wave-
length. Similarly to the experiments at 800 nm, we
initially found the most resonant film thickness, which
turned out to be 150 nm (Fig. S4c). For this experi-
ment, we employed Yb+3 laser (TeMa, “Avesta Project

Ltd.”) emitting pulses with central wavelength 1050 nm,
spectral width 7 nm, and duration 150 fs. The THG
dependencies on film thicknesses at different intensi-
ties correlate with the results of our analytical model
(see Section VI) for the following parameters: χ(3) =
1.2 · 10−18m2/V 2, n(Si,λ = 350nm) = 5.44+i·2.997,
n(Si,λ = 1050nm) = 3.556+i·0, n(SiO2,λ = 350nm) =
1.477+i·0, n(SiO2,λ = 1050 nm)=1.45+i·0. This exper-
iment proofs the importance of Fabry-Perot resonances
for IR pulses as well as for 800 nm. Further step is to
study THG under 1050-nm irradiation from the meta-
surface, which is resonant only for 800 nm. The result
of these measurements are shown in Fig. S4d, where 3-
fold average decrease of TH signal was observed in broad
range of intensities.

The measurements of THG in non-resonant regimes
support the idea, that TH enhancement observed for self-
adjusted metasurfaces is caused by specific periodicity of
the structure rather than roughness with larger effective
surface area.

V. ESTIMATION OF UV PULSE DURATION

The spreading of the pump pulse can be estimated as
follows. The finite thickness of the Si film will contribute
to the temporal broadening of the input pulse and the
estimate is T = GVD ·d/τ where d is the thickness of the
film and τ is the duration of the input pulse. For GVD of
silicon at 800 nm this gives the value of subfemtoseconds
and thus it can be neglected even if we take into account
that the reflection at the interfaces increases the effective
optical thickness of the film by a factor of five (the highest
Q of the system).

The resonant localized mode also causes the increase
of the duration of the pump signal. This contribution
can be estimated as the dissipation time of the filed in
the resonator and for the quality factor Q = 5 at the
wavelength 800 nm it is ≈ 15 fs which is smaller but
comparable with the duration of our input pulse. More
exact estimate obtained from the solution of the oscillator
equation with Q = 5 excited by 40 fs pulse of Gaussian
shape gives the lifetime of the mode at the fundamental
frequency to be less than 50 fs. So the pulse of the third
harmonic is expected to have the duration less then 30 fs.

VI. MODEL FOR THIRD HARMONICS
GENERATION

Let us consider a one-dimensional system consisting of
silicon film with thikness d placed on the silica substrate
and air at the another side. We assume that the system is
pumped by the incident radiation from the substrate side
at normal incidence as it shown in Fig. S5. The silicon
film has a cubic nonlinearity and therefore the incident
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wave causes the emission of the radiation at the triple
frequency.

We assume that the third harmonic is much weaker
compared to the fundamental one. This assumption is
fulfilled for the experimental conditions - the intensity of
the third harmonic is less than 10−6 of the intensity of
the fundamenatl harmonic. This assumption allows us to
split the theoretical problem in two parts and solve them
separately. The first part of the problem is to calculate
the spatial distribution of the field of the fundamental
harmonics neglecting the effect of the third and higher
harmonics on the fundamental one. Knowing the nonlin-
earity and the distribution of the fundamental harmonic
field it is possible to find the distribution of the nonlin-
ear current at the frequency of the third harmonic. The
last step is to solve the problem of the emission of the
electromagnetic waves by the nonlinear current.

To solve these problems we use well known trans-
fer matrix method [9]. Let us denote the air by index
j = 1, fused silica substrate by index j = 2 and sili-
con by index j = 3, so kj = ωnj/c is the wavevector in
the medium with index j, nj is the refractive index, c
is the speed of light. Fresnel coefficients for the trans-
mission and reflection, respectively, will be expressed as
rij = (ni − nj)/(ni + nj), tij = 2ni/(ni + nj). The sys-
tem is pumped by incident radiation with field strength
E0 at the first harmonic frequency ω1. The procedure
of the calculation of the field is standard but it is long
and thus we do not discuss it here in detail giving only
the final expression. The transmitted first harmonic field
strenght Et(ω1) is determined by the transmission coef-
ficient T (ω1) as:

Et(ω1) = T (ω1)E0 =

=
t31(ω1)t23(ω1)t12(ω)eik1(ω1)z

eik3(ω1)d + r13(ω1)r32(ω1)e−ik3(ω1)d
E0.

(S18)

The fundumental field at the location of nonlinear layer
(0 < z′ < d) is determined by the expression:

Ez′(ω1) = f1(ω1, z
′)E0 =

=
t23(ω1)t12(ω1)

(
eik3(ω1)z

′ − r13(ω1)e−ik3(ω1)z
′
)

eik3(ω1)d + r13(ω1)r32(ω1)e−ik3(ω1)d
E0.

(S19)

The denominator in the expression for f1(ω1, z
′) can

become small at the resonances and this means the in-
crease of the intensity of the fundamental harmonics at
resonant frequencies. We calculate the nonlinear current
at third harmonic frequency ω3 = 3ω1 assuming that
the current is co-directed with the electric field of the
fundamental mode and the nonlinear coefficient does not
depend on the frequency jn(ω3, z

′) = iω3ε0χ
(3) ·Ez′(ω1)3.

An important fact is that the intensity of the light at the
fundamental harmonics is not spatially uniform in the
film but has pronounced maxima so that the nonlinear
current has pronounced maxima too. That is why some

parts of the structure contribute to the third harmonic
generation more then the others.

z

FIG. S5. Geometry of the problem of third harmonic genera-
tion from the silicon film placed on the fused silica substrate

The next step is the calculation of the waves excited
by the nonlinear current. This can conveniently done
using Green functions formalism. We can express the
amplitude of the emitted third harmonic E(ω3) through
the integral of the product of the Green function and the
nonlinear current. The third harmonic field on the left
of the film (in the air) Et(ω3) given by:

Et(ω3) = −
∫ d

0

G(z, z′)jn(ω3, z
′)dz′, (S20)

G(z, z′) =
t31(ω3)eik1(ω3)z

2iε0ω3
×

× eik3(ω3)(d−z′) + r32(ω3)e−ik3(ω3)(d−z′)

eik3(ω3)d + r13(ω3)r32(ω3)e−ik3(ω3)d
.

(S21)

From the expression (S20) it is clearly seen that the
efficiency of the third harmonics depends not only on the
intensity distribution of the nonlinear current but also
on the structure of the Green function. Thus the reso-
nances on the frequency of the third harmonics can also
enhance the emission of the radiation. The later is known
as Purcell effect in quantum optics. However for the ex-
perimental conditions the losses are high at the frequency
of the third harmonic and thus only the radiation from a
thin layer close to the interface is important.

Finally to estimate the efficiency of the third harmonic
generation we introduce the coefficient showing the ratio
of the energy flow W in the third harmonic in the air to
the energy flow in the transmitted fundamental wave:

η =
W3

W1
=
|Et(ω3)|2

|Et(ω1)|2
(S22)

Now we can calculate the radiation efficiency for the
experimental parameters. The parameter of nonlinear
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susceptibility in our calculation is taken to be equal
to χ(3) = 1.2 · 10−18m2/V 2 [10, 11]. Our estimates
show that the maximum of the third-harmonic genera-
tion efficiency is expected for 106-nm film and is equal to
ηteor = 8·10−7. This estimate matches well to the experi-
mentally measured efficiency reaching maximum value of
ηexp = 4.8 · 10−7 for 100-nm Si-film. The theoretical and
experimental dependencies of the generation efficiency on
the thickness of the film is shown in panel (a) of Fig. 4.
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