Supporting Information:

Transferrin Conjugated Nontoxic Carbon Dots for Doxorubicin Delivery to Target Pediatric Brain Tumor Cells

Shanghao Li¹,§, Daniel Amat¹,§, Zhili Peng¹, Steven Vanni², Scott Raskin³, Guillermo De Angulo³, Abdelhameed M. Othman⁴,⁵,* Regina M. Graham², and Roger M. Leblanc¹,*

¹Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States

²Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida, 33136, United States

³Nicklaus Children’s Hospital, Miami, Florida, 33155, United States

⁴Department of Chemistry, Faculty of Science in Yanbu, Taibah University, Yanbu, Saudi Arabia

⁵Department of Environmental Biotechnology, Genetic Engineering and Biotechnology, University of Sadat City, Sadat City, Egypt

§These two authors contribute equally.

*Corresponding authors R.M.L. Tel.: +1–305–284–2194; Fax: +1–305–284–6367. E-mail: rml@miami.edu. A.M.O. Tel.: +966–560–251–254. E-mail: hameed.mahmoud61@hotmail.com.

Keywords: Anti-Cancer; Carbon Dots; Doxorubicin; Drug Delivery; Pediatric Brain Tumors; Transferrin
Figure SI-1. Pediatric Brain Tumor Cell lines. Characteristics of cell lines used in this study (A), and Western blot analysis of TFR1 levels in multiple pediatric brain tumor cell lines (B). CHLA-259 (Medulloblastoma) CHLA-266sp refers to the stem-like cell population, GBM-glioblastoma, ATRT-Atypical teratoid/rhabdoid tumor, PD-progressive disease.