Formation of Fe$_3$O$_4$@SiO$_2$@C/Ni Hybrids with Enhanced Catalytic Activity and Histidine-rich Protein Separation

Yanwei Zhanga, Min Zhang*,a, Jinbo Yanga, Lei Dinga, Jing Zhenga, Jingli Xu*,a, and Shenglin Xiong*,b

aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.

bKey Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
Figure S1. Energy-disperse X-ray spectrum (EDS) of Fe₃O₄@SiO₂@C/Ni-1 composites

Figure S2. (A) FTIR spectra of Fe₃O₄ (a), Fe₃O₄@SiO₂ (b), Fe₃O₄@SiO₂@PDA-Ni²⁺-1 (c) and Fe₃O₄@SiO₂@C/Ni-1 (d). (B) TGA test of Fe₃O₄@SiO₂ (a), Fe₃O₄@SiO₂@PDA-Ni²⁺-1 (b), Fe₃O₄@SiO₂@PDA-Ni²⁺-2 (c).
Figure S3. FESEM images of products obtained by annealing Fe$_3$O$_4$@SiO$_2$@PDA-Ni$^{2+}$-1 under N$_2$ atmosphere at 350 °C (A), 600 °C (C); FESEM images of core-shell structured Fe$_3$O$_4$@SiO$_2$@C/Ni composites obtained by annealing Fe$_3$O$_4$@SiO$_2$@PDA-Ni$^{2+}$-2 under N$_2$ atmosphere at 350°C (B), 600°C (D). Scale bars: 500 nm (A-D).

Figure S4. XRD patterns of Fe$_3$O$_4$ (a), Fe$_3$O$_4$@PDA/Ni$^{2+}$ (b), Fe$_3$O$_4$@C/Ni(c) ((M$_{dopamine:nickel}$ of 1:2, 37.6 mg nickel salt and 15 mg dopamine, carbonization at 500°C)
Figure S5. FESEM of Fe$_3$O$_4$@SiO$_2$@C/Ni with different thickness of SiO$_2$ by adjusting the different amount of TEOS from 50 μL (a), 150 μL (b), 300 μL (c), 500 μL (d) while keeping the other parameters fixed. Scale bars: 500 nm (A, C) and 250 nm (B, D).

Figure S6. Magnetic hysteresis curves of Fe$_3$O$_4$@SiO$_2$@PDA-Ni$^{2+}$-1 (A), Fe$_3$O$_4$@SiO$_2$@C/Ni-1 (B) measured at room temperature. (the inset is the digital picture showing that Fe$_3$O$_4$@SiO$_2$@C/-1 can be isolated from the solution by magnet.)
Figure S7. SEM and TEM images of α-Fe$_2$O$_3$ (a-d) and SiO$_2$@Fe$_3$O$_4$ (e-h).

Figure S8. XRD patterns of α-Fe$_2$O$_3$@PDA/Ni$^{2+}$ (a), Fe$_3$O$_4$@C/Ni (b), α-Fe$_2$O$_3$@SiO$_2$@PDA/Ni$^{2+}$ (c) and α-Fe$_2$O$_3$@SiO$_2$@C/Ni (d).
Figure S9. Recyclability of Fe$_3$O$_4$@SiO$_2$@C-Ni-1 as Catalysts for the reduction of 4-nitrophenol.

Figure S10. Linear fitting of adsorption isotherms plots based on Freundlich model.
Table S1 the estimate of Langmuir model and Freundlich model

<table>
<thead>
<tr>
<th></th>
<th>Langmuir</th>
<th>Freundlich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q_m</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>409.84</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Figure S11. Reusability of Fe$_3$O$_4$@SiO$_2$@C/Ni-1 through the adsorption–regeneration cycle.
Figure S12. (A) Curve a is UV-vis spectra of initial BHb (A), BHb/BSA binary solution (B), BHb/Lysozyme binary solution (C), BHb/BSA/Lysozyme ternary solution(D). Curve b is UV-vis spectra of supernatant of BHb (A), BHb/BSA binary solution (B), BHb/Lysozyme binary solution (C), BHb/BSA/Lysozyme ternary solution (D) after adsorbed by Fe₃O₄@SiO₂@C/Ni-1 Curve c is UV-vis spectra of desorption solution of Fe₃O₄@SiO₂@C/Ni-1 in BHb (A), BHb/BSA binary solution (B), BHb/Lysozyme binary solution (C), BHb/BSA/Lysozyme ternary solution (D) with 0.2 g mL⁻¹ imidazole solution as the eluent.
Figure S13. SDS-PAGE analysis of adsorption by Fe$_3$O$_4$@SiO$_2$@C/Ni-1 from solution. Lane 1, marker; lane 2, initial human blood diluted 60-fold as the control; lane 3, residual human blood solution after adsorption by Fe$_3$O$_4$@SiO$_2$@C/Ni-1; lane 4, the eluted human blood from Fe$_3$O$_4$@SiO$_2$@C/Ni-1 by 0.2 g ml$^{-1}$ imidazole solution.