Supporting Information

Efficient vacuum-free-processed quantum dot light-emitting diodes

with printable liquid metal cathodes

Huiren Peng, Yibin Jiang, Shuming Chen*

Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China

chen.sm@sustc.edu.cn

*Correspondence and requests for material to S.C. (chen.sm@sustc.edu.cn)
Figure S1. Characterization of ZnO nanoparticle: (a) TEM image of the ZnO nanoparticles (5 nm in diameter); (b) Current density-voltage characteristics (J-V) of an electron-only device (ITO/ZnO/Al). The thickness of the ZnO layer is 400 nm. The electron mobility of the ZnO film is obtained by fitting space-charge-limited-current region, \(J \propto v^2 \) with Child's law,
\[
J = \frac{9}{8} \varepsilon_r \varepsilon_0 \mu_e v^2 / d^3,
\]
where \(\varepsilon_0, \varepsilon_r, \mu_e \) and \(d \) are the vacuum permittivity, relative permittivity, electron mobility and film thickness, respectively \([1,2]\). By assuming that \(\varepsilon_r=4 \), \(\mu_e \) is determined to be \(2.8 \times 10^{-3} \) cm\(^2\)V\(^{-1}\)s\(^{-1}\).

References

Figure S2. Characterization of quantum dots: The TEM images of the QDs were obtained using Tecnai F30 microscope at imaging center of Southern University of Science and Technology. (a) CdZnSe/CdS/ZnS red QDs, (b) CdZnSeS/ZnS green QDs, and (c) ZnCdS/ZnS blue QDs.