Electronic Supplementary Information

Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation

Xian-Wu Hua,‡a Yan-Wen Bao,‡a Hong-Yin Wang,a Zhan Chenb and Fu-Gen Wu*a

aState Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China. E-mail: wufg@seu.edu.cn

bDepartment of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States. E-mail: zhanc@umich.edu

‡Xian-Wu Hua and Yan-Wen Bao have contributed equally to this paper.
Fig. S1 The EDS result of CDs-\textit{S. aureus}.

Fig. S2 Fluorescence emission spectra of CDs-\textit{S. aureus} dispersed in cell PBS solution excited at different wavelengths from 300 to 540 nm with an increment of 20 nm.

Fig. S3 The high-resolution XPS peaks of (A) Si2p, (B) P2p and (C) S2p, respectively.
Fig. S4 The fluorescence decay curve of CDs-\textit{S. aureus}.
Fig. S5 Characterizations of CDs-E. coli. (A) TEM image of CDs-E. coli. (B) UV–vis spectrum of CDs-E. coli. Inset shows the CDs irradiated under white light (left) and UV (365 nm) light (right). (C) Fluorescence emission spectra of CDs-E. coli excited at different wavelengths from 300 to 540 nm with an increment of 20 nm. (D) FTIR spectrum of CDs-E. coli. (E) XPS spectrum of dried CDs-E. coli. (F–H) The high-resolution XPS peaks of C1s, N1s and O1s, respectively.

Fig. S6 PL properties of CDs-S. aureus as a function of (A) pH, (B) temperature, (C) ionic strength (different concentrations of PBS solution, pH = 7.4) and UV irradiation time. The PL intensity (P) was measured at 416 nm ($\lambda_{ex} = 332$ nm). P_0 is the PL intensity of CD solution in the control group (pure water, pH =7, 25 °C, without laser irradiation).
Fig. S7 The confocal fluorescence images (A) and flow cytometric analyses (B) of live and dead *S. aureus* stained with CDs- *E. coli* for 1 h. Fluorescence images were captured under the excitation of 405, 488 and 552 nm, respectively. Flow cytometric analyses were conducted using three channels of FITC, PE and PE-Texes Red.

Fig. S8 Bright field and fluorescence images of live/dead bacteria including two other Gram-
positive bacteria (*M. luteus* and *B. subtilis*) and three Gram-negative bacteria (*E. coli*, *P. vulgaris* and *P. aeruginosa*) stained with CDs-*E. coli*. Fluorescence images were captured upon excitation at 405, 488 and 552 nm, respectively.

Fig. S9 Bright field and fluorescence images of live and dead fungal cells (yeast and *T. reesei*) stained with CDs-*E. coli*. Fluorescence images were captured upon excitation at 405, 488 and 552 nm, respectively.
Fig. S10 Bright and fluorescence images of live and dead *S. aureus* cells stained with CDs-*S. aureus* at various concentrations. Fluorescence images were captured upon excitation at 405, 488 and 552 nm, respectively.

<table>
<thead>
<tr>
<th>Control</th>
<th>50 μg/mL</th>
<th>100 μg/mL</th>
<th>200 μg/mL</th>
<th>500 μg/mL</th>
<th>1 mg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright Field</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bright Field</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>405 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>488 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>552 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. S11 Bright and fluorescence images of live and dead *S. aureus* cells stained with CDs-*E. coli* at various concentrations. Fluorescence images were captured upon excitation at 405, 488 and 552 nm, respectively.
Fig. S12 Bright field and fluorescence images of CDs- E. coli (200 μg/mL)-stained live S. aureus and dead S. aureus that were killed in different ways. Fluorescence images were captured upon excitation at 405, 488 and 552 nm, respectively.

Fig. S13 (A) Real-time cell growth monitoring of S. aureus bacteria and (B) colony unit forming counting assay for yeast cells (incubated with 30 μM PI or different concentrations of CDs-S. aureus). (C) Real-time cell growth monitoring of S. aureus bacteria and (D) colony unit forming counting assay for yeast cells (incubated with different concentrations of CDs-E. coli).
Fig. S14 The zeta potential values of four types of CDs dissolved in cell PBS solution and pure water.