Formation of Surface Nanobubbles on Nanostructured Substrates

Lei Wanga,b, Xingya Wangb, Liansheng Wangb, Jun Huc, Chunlei Wangd, Binyu Zhaoc, Xuehua Zhange, Renzhong Taib, Mengdong Hea,*, Liqun Chena and Lijuan Zhangb,*

aInstitute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 410004, China
bShanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
cLaboratory of Physical Biology and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
dDivision of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
eSoft Matter & Interfaces Group, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia

Email: mengdonghe@csuft.edu.cn, zhanglijuan@sinap.ac.cn

Fig. S1 (a) Nanotrench structure (period/trench: 700nm/300nm) by EBL. (b) Section of nanotrench in (a). The depth is about 61nm similar to the thickness 60nm of PMMA designed. So the valley is bare silicon.

Fig. S2 Nonotrench substrate (500 nm/400 nm) in (a) air, (b) water and (c) ethanol-water exchange. Nothing is found in air and water except the substrate, but nanobubbles were generated after ethanol-water exchange.

Fig. S3 Typical images of properties of nanobubbles by PF-QNM: (a) Height, (b) Stiffness, (c) Adhesion. From the stiffness image, we can find that the formed nanobubbles are softer than ZEP surface.