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A Brief Description of MED-

SEM

The multi-energy deconvolution SEM (MED-
SEM) technique is a new non-destructive imag-
ing workflow. In this method samples are
scanned using a sequence of electron beam ener-
gies resulting in back-scattered electron (BSE)
signal collection from different depths of the
specimen. The resulting image stack, contain-
ing subsurface volume information, is processed
using a deconvolution algorithm which mini-
mizes the substantial cross-talk between BSE
signals emanating from different depths, allow-
ing for the reconstruction of virtual thin sec-
tions.

The subsurface emission characteristics of
BSEs were studied extensively in the SEM liter-
ature.1 BSE depth profiles showing subsurface
emission peaks that depend on the accelerating
voltage led to earlier concepts of tomographic
imaging in the SEM.2,3

Information depth and resolution conditions
for BSE microtomography were studied by
Niederig and Rau4 and Gostev et al.5 with
a main focus on subsurface imaging of micro-
electronic structures. To achieve layer deconvo-
lution, linear image formation models were as-

sumed4–6 and a number of basic semiconductor
layouts were investigated. A key limitation of
prior approaches is that they proposed a direct-
inversion reconstruction algorithm known to be
highly sensitive to noise and outliers. Further-
more, previous BSE tomography schemes re-
lied on parameter tuning by users which limited
the application to a very small number of lay-
ers, and prevented the automation of the imag-
ing process. These considerations restricted the
applicability of BSE tomography, an otherwise
high potential non-destructive 3D imaging tech-
nique in the SEM.

To address these limitations, an adapted com-
putational approach is presented. It forms the
basis of the MEDSEM method which is applied
here in an imaging regime that better approx-
imates a linear model. A useful observation
enabling MEDSEM was that in practice most
of the detected BSEs emerge from a relatively
thin column localized on the axis of the pri-
mary beam. We observed that this effect can
result in surprisingly good lateral resolution for
subsurface layers.

The current MEDSEM workflow uses no prior
knowledge of the BSE point spread function
(PSF). It instead employs blind source sepa-
ration (BSS) techniques7 to deconvolve signals
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from different depths. Relevant Poisson noise
models that characterize the imaging process
are also taken into account.

The first step in the MEDSEM workflow is the
acquisition of a BSE image stack of the regions
of interest in the sample. The acquisition step
uses SEM auto-adjustments (focus/stigmation,
contrast, brightness) for consistent image qual-
ity across the sequence.

This is followed by image stack registration
which needs to be done with high accuracy to
enable good results with subsequent reconstruc-
tion algorithms. The latter algorithms rely on
estimating pixel-to-pixel statistical dependen-
cies across the layers.

For reconstructing 3D volumes from the BSE
stacks a deconvolution algorithm based on blind
source separation (BSS) techniques was devel-
oped. BSS algorithms are used to deconvolve
multiple linearly mixed signals in various appli-
cations.7 The deconvolution was restricted to
the Z dimension (depth) only based on the ob-
servation that the subsurface X-Y spread of the
detected BSEs is limited for a range of use-
ful imaging conditions. The off-axis emission
was assumed to represent a weak background
signal that does not substantially affect resolu-
tion. Such laterally confined PSF model was
observed in the work of Hennig and Denk8 and
in our own Monte Carlo simulations. An exten-
sion of the PSF footprint to a full 3D volume
is being developed for deeper sample probing
where the lateral spread will become more sig-
nificant.

The MEDSEM Deconvolu-

tion Algorithm

The image formation of each BSE image Yn is
modeled as:

Yn = Hn ∗O (S2)

Which represents the convolution of the imaged
volume O with a beam-energy dependent point
spread function Hn. The aim of the reconstruc-
tion technique is to recover an estimate of the
volume O from the acquired BSE image stack
{Yn}n=1,,N . The main difference with conven-

tional deconvolution techniques, such as those
used in 3D fluorescence microscopy, is the use
of a variable PSF that depends on beam en-
ergy. This PSF will account for the signal com-
ing from the both deeper and shallower layers
of the sample. One can formulate the variable-
kernel deconvolution task using a conventional
Bayesian restoration framework. The probabil-
ity of the sought spatial variable O given the
acquired images Yn is Pr(O|Yn). While Pr(O)
is defined as the prior probability associated
with O representing our knowledge about the
structure to be reconstructed, and Pr(Yn) as
the probability of the acquired images. This
latter is a constant given that the images Yn

are observed. Using Bayes rule we have

Pr(O|Yn) =
Pr(Yn|O) Pr(O)

Pr(Yn)
(S3)

In the Bayesian framework our problem can be
expressed as the following maximization task:

Ô = argmaxO≥0{Pr(O|Yn)} (S4)

Where we need to enforce the non-negativity of
the variable Ô in order to obtain a physically
meaningful estimate Ô. It is common to mini-
mize the log-likelihood function to simplify the
calculations:

Ô = argminO≥0{− log(Pr(O|Yn))} (S5)

Our electron detection is well modeled by a
Poisson process. At each voxel x in the 3D grid
Ω the image is assumed to be formed by the
realization of independent Poisson processes.
This leads to:

Pr(O|Yn) =∏
x∈Ω

((Hn ∗O)(x))Yn(x) exp(−(Hn ∗O)(x))

Yn(x)!

(S6)
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To recover the volume O we need to minimize
the criterion

J(O|Yn) = − log(Pr(O|Yn))

=
∑
x∈Ω

((Hn ∗O)(x))−Yn(x) · log((Hn ∗O)(x))

(S7)

Using fixed-point iterative derivation9 the
positivity-constrained minimization problem
(S5) can be solved using the following scheme:

Ol+1(x) = Ol(x) ·
(

Yn(x)

(Hn ∗Ol)(x)
∗Hn(−x)

)
(S8)

This algorithm is a variant of the well-known
expectation maximization maximum-likelihood
(EMML) approach.10,11

In our case the iterative algorithm needs to
be sequentially used for all kernels Hn associ-
ated with the different PSFs. Convergence can
be assessed empirically or based on other crite-
ria such as the relative change in the variables.
In practice, we need to recover or fine-tune the
values of the unknown PSF kernels Hn as well.
Therefore, we are using alternate minimization
O and Hn. We then obtain the following algo-
rithm:

H l+1
n (x) = H l

n(x)·
(

Yn(x)

(H l
n ∗Ol+1)(x)

∗Ol+1(−x)

)
(S9)

The variables O and Hn can have random ini-
tializations or can start from some rough initial
model. In our work the deconvolution mostly
reduced to unmixing the layers in the depth as
explained earlier.

PSF Profiles

As described in the previous section, the blind
source separation works by computing the max-
imum likelihood of the convolution of the es-
timated physical structure and a point spread
function for each electron energy. It can be
useful to examine the determined point spread
functions to ensure that the deconvolutions are
proceeding in a physically plausible manner.

In Fig. S1 we show the calculated Hn PSF
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Figure S1: Determined point spread functions
(PSFs), Hn, showing the contribution of col-
lected emission per depth slice layer for each
electron energy. The functions are normalized
so that for each slice the contribution of all
PSFs sum to one.

values for each electron energy as their contri-
bution to the determined depth slices to the
core-shell nanowire example from the main text
(Fig. 2). The determined PSFs appear quite
similar to those depicted schematically in Fig.
1 of the main text – higher electron energy PSFs
contribute more to deeper depth slices, and, up
to ∼15 keV increasingly broaden as well. Past
this point, however, the PSFs appear to be in-
creasing in sharpness.

While this sharpness of high energy PSFs
may appear odd at first, it actually entirely ex-
pected: The normalization of Fig. S1 shows
the relative contribution of each PFS to the es-
timates of the physical depth slices. For slices
at depths past the center of the sample, each
deeper slice has fewer PSFs contributing to the
composition of the slice (as lower energy elec-
trons do not probe these depths), and thus the
contribution of the present PSFs necessarily be-
comes larger, increasing the sharpness of the in-
creasing slice depth. Despite the sharp appear-
ance, careful inspection shows the contribution
to preceding layers of the higher energy electron
PSFs is still significant, as expected.

The reconstructions (or at least the conver-
gence time) could possibly be improved slightly
by modifying the initial guesses of the PSF
shapes, but this would require some a priori
knowledge of the energy range and interaction
depths for the materials investigated. As this
study focuses on the ability of the MEDSEM
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technique to operate without any input other
than a BSE image stack, we believe it is quite
encouraging that the PSF profiles fit their ex-
pected shapes.

Resolution

The achievable resolution in MEDSEM depends
strongly on a number of factors, including the
scanning electron microscope used, the quality
of the focus/stigmation adjustments between
energy modifications, the alignment (registra-
tion) of the BSE image stack, and the number
and range of energies measured.

For the setup and measurements here, the
shape resolution of the nanowire samples in Fig.
3 provide the example with the smallest fea-
tures. Compared to the FIB cross cuts, dimen-
sions of the nanowire cross sections are fairly
accurate – the left nanowire is 35 nm × 45 nm
in the FIB measurement, and approximately
36 nm × 48 nm in the MEDSEM reconstruc-
tion. Similarly, the right nanowire is 51 nm ×
29 nm in FIB and approximately 56 nm × 34
nm the MEDSEM reconstruction. The 10 nm
thick gold sheet is resolved well in both.

The lateral resolution appears limited by
shifts in the vertical stacking of the layers –
at a pixel size of 4 nm, a one pixel misalign-
ment between two layers would give a 4.5 nm
error in the relative positions of features. The
alignment is thus performed on higher resolu-
tion raw images to minimize these effects. The
depth resolution is more difficult to define, as
the “flattening” aberrations cause there to be
more of an uncertainty limit than resolution
limit to the reconstructions: two distinct struc-
tures may be resolvable, but their relative po-
sition to other structures may be uncertain.
However, given ability to resolve features of 10
nm, and the accuracy of the nanowire recon-
struction dimensions, we estimate that for the
investigations here, the lateral resolution seems
to be ∼5 nm, and the depth resolution to be
∼10 nm.
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