Electronic Supporting Information

Graphene barristor using nitrogen profile controlled ZnO Schottky contacts

Hyeon Jun Hwang¹, Kyoung Eun Chang¹, Won Beom Yoo¹, Chang Hoo Shim¹, Sang Kyung

Lee¹, Jin Ho Yang¹, So-Young Kim¹, Yongsu Lee¹, Chunhum Cho²,

and Byoung Hun Lee^{1,2} *

¹School of Materials Science and Engineering, Gwangju Institute of Science and Technology, ²Departmant of Nanobio Materials and Electronics, Oryong-dong 1, Buk-gu, Gwangju 500-712, Korea

*Authors to whom any correspondence should be addressed.

E-mail: <u>bhl@gist.ac.kr</u>

Fig. S1 Representative transfer characteristics comparing the buried gate GFET and top gate GFET.

Fig. S2 (a) SEM image and (b) AFM tophology roughness of graphene-ZnO barristor device. ZnO is not contact with source electrode but graphene channel. Buried gate electrode only affect to graphene channel for control the barrier height on graphene-ZnO barristor. Surface roughness is very low on graphene channel.

Fig. S3 On-off ratio and current density distribution of 80 devices of graphene/ZnO:N barristor (a)Lognormal distribution of on–off ratio(average on-off ratio is 1.8×10^6) and standard deviation is 0.9. (b)Log-normal distribution of J_{on} and J_{off}. The average J_{on} and J_{off} is 2.7nA/cm² and 70μ A/cm² and standard deviations are 1.7 and 0.68.

Fig. S4 I_d - V_d curve of variable ZnO:N stack in Graphene-ZnO:N barristor. (a) ZnO:N 200cycle, (b)ZnO:N 300cycle, (c)ZnO:N 500cycle, (d)ZnO:N 200cycle, (e)ZnO 70cycle/ZnO:N200cycle, (f)ZnO 150cycle/ZnO:N200cycle. Thicker film shows higher on current but it has low on/off ratio. From the ZnO/ZnO:N stack, saturation current is increased and on current also increased with lower drive voltage.