Supplementary Information

Mn-doped ZnSe quantum dots initiated mild and rapid cation exchange for tailoring composition and optical properties of colloid nanocrystals: novel template, new applications

Zhi-Qiang Zhou,^a Li-Yun Yang,^a Ren Yan,^a Jie Zhao,^a Yu-Qi Liu,^a Lu Lai,^a Feng-Lei Jiang,^{*a} Thomas Maskow,^{*b} and Yi Liu^{*a}

^a State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China. Email: fljiang@whu.edu.cn (F.-L. Jiang); yiliuchem@whu.edu.cn (Y. Liu). Tel: +86-27-68756667.

^b Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: thomas.maskow@ufz.de (T. Maskow).

Contents

Fig. S1 Characterization of Mn-doped ZnSe QDs		
Fig. S2 The percentage of decrease in the fluorescence peak after	Page 4	
incubating with 100 μM of common dopants (Ag+, Pb^2+, Fe^3+, Co^2+, Ni^2+		
and Cu^{2+}).		
Fig. S3 PL spectra of Ag-doped ZnSe QDs after a 10 min reaction time.	Page 4	
Fig. S4 PL spectra of Cu-doped ZnSe QDs (a) and Pb-doped ZnSe QDs (b)	Page 5	
after different reaction times.		
Fig. S5 XPS spectra of Mn-doped ZnSe QDs after incubating with 80 μ M	Page 5	
$Cd^{2\scriptscriptstyle +}$ at 100 °C for 1 hour, the inset corresponds to the XPS Mn 2p		
spectrum		

Fig. S6 XPS spectra of Mn-doped ZnSe QDs after the addition of $60\mu M$		
Hg ²⁺ at room temperature. The inset corresponds the Mn 2p spectra of Mn-		
doped ZnSe after cation exchange.		
Fig. S7 XPS spectra of Mn-doped ZnSe QDs after the addition of 100 μ M	Page 6	
Ag ⁺ at 50 °C. The inset corresponds the Ag 3d spectra of Mn-doped ZnSe		
after cation exchange.		
Fig. S8 Fluorescence spectra of Mn-doped ZnSe QDs in the presence of	Page 7	
both Hg^{2+} and Cd^{2+} . (a) The molar ratio of Hg^{2+}/Cd^{2+} was set to 10:1, 10:2,		
10:5 and 10:10, respectively. In every experiment, the concentration of		
Hg^{2+} was 10 $\mu M.$ (b) The molar ratio of $Cd^{2+}\!/Hg^{2+}$ was set to 10:1, 10:2,		
10:5 and 10:10, respectively. In every experiment, the concentration of		
Cd^{2+} was 10 μ M.		
Fig. S9 Fluorescence intensity of Mn-doped ZnSe QDs with the addition of	Page 7	
Cd^{2+} , Hg^{2+} and other metal ions. The control represents the addition of		
$5\mu M Cd^{2+}$ and $2\mu M Hg^{2+}$ into Mn-doped ZnSe QDs.		
Table S1 References for the detection of different kinds of D-dots.	Page 8	
Table S2 Solubility product constants (K_{sp}) of different transition metal	Page 8	
selenides at 25°C.		
Table S3 Changes in elemental content of Mn ²⁺ and Ag ⁺ after the addition	Page 8	
of 100µM Ag ⁺ during different reaction duration.		
Table S4 Calculated result of the concentration of Hg^{2+} and Cd^{2+} in	Page 9	
samples using linear relationship of fluorescence intensity of Mn-doped		
ZnSe QDs and $C_{\text{Hg}}^{2+}(C_{\text{Cd}}^{2+})$.		

Fig. S1 Characterization of Mn-doped ZnSe QDs: (a) TEM image of Mn-doped ZnSe, a representative HRTEM is given as the inset. (b) EDX result of Mn-doped ZnSe QDs. (c) Fluorescence and absorbance spectra of Mn-doped ZnSe QDs, photo taken under the excitation of 365 nm is given as inset.

Fig. S1a depicts a transmission electron microscopy (TEM) image of D-dots prepared at pH = 8. The average size of the QDs was quantified from such images to be 2.7±0.5 nm. The inset of Fig. S1a shows the corresponding high resolution TEM (HRTEM) image. The distances between the adjacent lattice fringes were found to be 0.31 nm for Mn-doped ZnSe QDs, which is consistent with the literature value (0.324 nm) for the (111) *d* spacing (JCPDS No. 800021), meaning that the prepared doped (alloyed) QDs were in the cubic phase. Fluorescence (FL) and optical absorption spectra of the samples collected at pH = 8 are shown in Fig. S1b. The weak fluorescence peak at 585 nm is attributed to a ${}^{4}T_{1} \rightarrow {}^{6}A_{1}$ transition of Mn²⁺ ions in T_{d} symmetry. The appearance of a characteristic peak indicates the successful introduction of Mn. The appearance of a Mn peak in energy dispersive X-ray (EDX) spectroscopy confirms the incorporation of Mn into the ZnSe lattice (Fig. S1c).

Fig. S2 The percentage of decrease in the fluorescence peak after incubating with 100 μ M of common dopants (Ag⁺, Pb²⁺, Fe³⁺, Co²⁺, Ni²⁺ and Cu²⁺).

Fig. S3 PL spectra of Ag-doped ZnSe QDs after a 10 min reaction time.

Fig. S4 PL spectra of Cu-doped ZnSe QDs (a) and Pb-doped ZnSe QDs (b) after different reaction times.

Fig. S5 XPS spectra of Mn-doped ZnSe QDs after incubating with 80 μ M Cd²⁺ at 100 °C for 1 hour, the inset corresponds to the XPS Mn 2p spectrum.

Fig. S6 XPS spectra of Mn-doped ZnSe QDs after the addition of 60μ M Hg²⁺ at room temperature. The inset corresponds the Mn 2p spectra of Mn-doped ZnSe after cation exchange.

Fig. S7 XPS spectra of Mn-doped ZnSe QDs after the addition of 100 μ M Ag⁺ at 50 °C. The inset corresponds the Ag 3d spectra of Mn-doped ZnSe after cation exchange.

Fig. S8 Fluorescence spectra of Mn-doped ZnSe QDs in the presence of both Hg²⁺ and Cd²⁺. (a) The molar ratio of Hg²⁺/Cd²⁺ was set to 10:1, 10:2, 10:5 and 10:10, respectively. In every experiment, the concentration of Hg²⁺ was 10 μ M. (b) The molar ratio of Cd²⁺/Hg²⁺ was set to 10:1, 10:2, 10:5 and 10:10, respectively. In every experiment, the concentration of Cd²⁺ was 10 μ M.

Fig. S9 Fluorescence intensity of Mn-doped ZnSe QDs with the addition of Cd^{2+} , Hg^{2+} and other metal ions. The control represents the addition of 5 μ M Cd^{2+} and 2 μ M Hg^{2+} into Mn-doped ZnSe QDs.

Table S1. References for the detection of different kinds of D-dots.

D-dots	Reference	Solvent
Cd-doped ZnSe QDs	Quinine Sulfate	0.1 M H ₂ SO ₄
Hg-doped ZnSe QDs	Rhodamine 6G	Water
Ag-doped ZnSe QDs	Quinine Sulfate	Water
Cu-doped ZnSe QDs	Quinine Sulfate	Water
Pb-doped ZnSe QDs	Quinine Sulfate	Water

Table S2. Solubility product constants (K_{sp}) of different transition metal selenides at 25°C.

	$K_{ m sp}$		$K_{ m sp}$
ZnSe	3.6×10^{-26}	Ag ₂ Se	3×10^{-54}
CdSe	4×10^{-35}	CuSe	2×10^{-40}
HgSe	4×10^{-59}	PbSe	1×10^{-37}

Table S3 Changes in elemental content of Mn^{2+} and Ag^+ after the addition of 100 μM Ag^+ during different reaction duration.

Reaction Time	Mn ²⁺	Ag^+
	(%)	(%)
10 min	2.0	0.0
1 h	0.8	1.6
4 h	0.2	5.2
7 h	0	14.0

Samples	Added Hg ²⁺	Added Cd ²⁺	Calculated Hg ²⁺	Calculated Cd ²⁺
	(µM)	(µM)	(µM)/Recovery ^a	(µM)/Recovery ^a
Hg ²⁺ :Cd ²⁺				
10:1	10.00	1.00	9.57/95.7%	0.05/5%
10:2	10.00	2.00	9.86/98.6%	2.03/101.5%
10:5	10.00	5.00	9.64/96.4%	4.74/94.8%
10:10	10.00	10.00	10.10/101.0%	11.77/117.7%
$Cd^{2+}:Hg^{2+}$				
10:1	1.00	10.00	1.12/112.0%	10.15/101.5%
10:2	2.00	10.00	2.50/125.0%	9.15/91.5%
10:5	5.00	10.00	5.15/103.0%	8.67/86.7%
10:10	10.00	10.00	9.76/97.6%	9.38/93.8%

Table S4 Calculated result of the concentration of Hg²⁺ and Cd²⁺ in samples using linear relationship of fluorescence intensity of Mn-doped ZnSe QDs and $C_{\text{Hg}}^{2+}(C_{\text{Cd}}^{2+})$.