Supporting Materials of

“Evolution of Dealloying Induced Strain in Nanoporous Gold Crystals”

Yu-chen Karen Chen-Wiegart1,2, Ross Harder3, David C. Dunand4 and Ian McNulty5

1 Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
2 Department of Materials Science and Chemical Engineering, Stony Brook University,
3 Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
4 Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
5 Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
Supporting Material 1. \(\chi^2 \) vs. number of iterations
\[\phi = Q \cdot u, \quad \phi > 0, \ u \cos \theta > 0 \]

Case Ia: \(\Gamma \cdot Q > 0 \) (for the red ball) \rightarrow tensile

Case Ib: \(\Gamma \cdot Q < 0 \) (for the red ball) \rightarrow compressive

\[\phi = Q \cdot u, \quad \phi < 0, \ u \cos \theta < 0 \]

Case IIa: \(\Gamma \cdot Q > 0 \) (for the red ball) \rightarrow tensile

Case IIb: \(\Gamma \cdot Q < 0 \) (for the red ball) \rightarrow compressive

Supporting Material 2. Illustration of the relationship between the directions of \(Q, \Gamma, \) and strain in four different cases. Here, \(Q \) is the momentum transfer, \(u \) is the lattice displacement field and \(\Gamma \) is the gradient of \(u \cos \theta \). \(\phi \) is the phase and \(\theta \) is the angle between \(Q \) and \(u \).